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Análise de Circuitos no Domı́nio Tempo

Ao se iniciar a análise de circuitos no domı́nio tempo, deve-se conhecer os modelos no domı́nio

tempo das principais funções que representam as fontes de tensão e corrente (sinais) presentes em

um circuito.

Esses sinais estão associados a fenômenos f́ısicos que ocorrem em um circuito; representam o fecha-

mento de uma chave, o decaimento natural da tensão em um elemento do circuito, entre outros.

São seis as principais funções: (1) impulso unitário, (2) degrau unitário, (3) rampa, (4) quadrática,

(5) exponencial e (6) senoidal. As equações e os gráficos dessas funções são vistas a seguir.

1. O gráfico da função Impulso Unitário, bem como sua equação, são vistos na Fig. 1.
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Figura 1: Função Impulso Unitário.

2. O gráfico e a equação da função Degrau Unitário são vistos na Fig. 2.

t

U−1(t)

U−1(t)







0 : t < 0

1 : t ≥ 0.

1

Figura 2: Função Degrau Unitário.
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3. A equação e o gráfico da função Rampa são vistos na Fig. 3.
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Figura 3: Função Rampa.

4. A Fig. 4 exibe a função Quadrática.
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Figura 4: Função Quadrática.

5. Já a Fig. 5 mostra a função Exponencial.
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Figura 5: Função Exponencial.

6. Por fim, o gráfico e equação da função Senoidal são exibidos na Fig. 6.

t

U−5(t)

U−5(t)







0 : t < 0

sen(ω0t) U−1(t) : t ≥ 0.

1

1
T/2 T

Figura 6: Função Senoidal.

Obs.: defini-se o instante de tempo t = 0 o momento inicial em que ocorrre alguma transição no

circuito, tal como uma chave abrindo ou fechando, um sinal (fonte) sendo “ligado”ao circuito, entre

outros. Ainda, defini-se também os intantes t = 0− e t = 0+ os intantes imediatamente anterior e

posterior a t = 0, respectivamente.

Indutor

A capacidade que um condutor possui de induzir tensão em si mesmo quando a corrente varia é a

sua auto-indutância ou simplesmente indutância, simbolizada pela letra L 1, medida em henrys (H).

1L = fluxo magnético/corrente = Weber/Ampére = henry.
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Em outras palavras, a indutância é a propriedade de um circuito fazer oposição a qualquer mudança

na circulação de corrente.

Um indutor é uma bobina de indução (condutor enrolado), usado para introduzir uma indutância

em um circuito. O comportamento dos indutores se baseia em fenômenos associados a campos

magnéticos produzidos por correntes elétricas. Quando há variação de corrente elétrica, o campo

magnético produzido por esta corrente também varia.

O śımbolo do indutor é visto na Fig. 7.
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Figura 7: Śımbolo do indutor.

A tensão entre os terminais de um indutor é proporcional à taxa de variação da corrente que o

percorre. Matematicamente, a relação é a seguinte:

VL = L
∂IL

∂t
. (1)

Integrando a expressão anterior, obtém-se a corrente IL:

IL =
1

L

∫ t

−∞

VL(t) ∂t =
1

L

∫ t

0
VL(t) ∂t + IL(0). (2)

Em um instante infinitesimal de tempo, entre 0− e 0+ por exemplo, tem-se:

IL(t) =
1

L

∫ t=0+

t=0
−

VL(t) ∂t = 0. (3)

Ou seja, não é posśıvel modificar a corrente no indutor de modo instantâneo, a não ser que VL = ∞.

Capacitor

Um capacitor é um dispositivo elétrico formado por duas placas condutoras de metal separadas por

um material isolante chamado dielétrico. O comportamento dos capacitores se baseia em fenômenos

associados a campos elétricos, armazenando a carga elétrica no dielétrico.

A capacitância é a capacidade de armazenamento de carga elétrica, simbolizada pela letra C 2, medida

em farads (F).

O śımbolo do capacitor é visto na Fig. 8.
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Figura 8: Śımbolo do capacitor.

A corrente do capacitor é proporcional à taxa de variação da tensão entre os terminais do capacitor.

Matematicamente, a relação é a seguinte:

IC = C
∂VC

∂t
. (4)

Integrando a expressão anterior, obtém-se a tensão VC :

VC =
1

C

∫ t

−∞

IC(t) ∂t =
1

C

∫ t

0
IC(t) ∂t + VC(0). (5)

2C = quantidade de carga/tensão = Coulomb/Volt = farad.
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Em um instante de infinitesimal de tempo, entre 0− e 0+ por exemplo, tem-se:

VC(t) =
1

C

∫ t=0+

t=0
−

IC(t) ∂t = 0. (6)

Ou seja, não é posśıvel modificar a tensão no capacitor de modo instantâneo, a não ser que IC = ∞.

Condições Iniciais e Finais de Tensão e Corrente em Capacitores e Indutores

Algumas considerações importantes, vistas a seguir, podem ser feitas a respeito do comportamento

inicial e final das tensões e correntes nos capacitores e indutores.

• Indutor para t = 0: a corrente que atravessa um indutor não pode variar instantaneamente; assim,

o indutor comporta-se como um circuito aberto, como visto na Fig. 9.
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Figura 9: Comportamento do indutor para t = 0.

• Indutor para t = ∞: quando a corrente que atravessa um indutor é constante, a tensão é nula; isto

é, o indutor se comporta como um curto-circuito, conforme visto na Fig. 10.
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Figura 10: Comportamento do indutor para t = ∞.

• Capacitor para t = 0: a tensão entre os terminais de um capacitor não pode variar instantanea-

mente; ou seja, o capacitor comporta-se como um curto-circuito, como visto na Fig. 11.
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Figura 11: Comportamento do capacitor para t = 0.

• Capacitor para t = ∞: quando a tensão é constante, a corrente em um capacitor é nula; isto é, o

capacitor se comporta como um circuito aberto, conforme visto na Fig. 12.
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Figura 12: Comportamento do capacitor para t = ∞.
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Resposta de Circuitos RC Série a um Degrau

A resposta de um circuito à aplicação abrupta de uma tensão ou corrente é conhecida como resposta

a um degrau. A resposta de um circuito, Fig. 13, a um degrau de amplitude V será descrita a seguir.

−

V U−1

+

RI

C

Figura 13: Circuito RC série.

Inicialmente, deve-se obter as condições iniciais de tensão e corrente dos componentes do circuito.

• para t ≤ 0− (t → −∞):

−

0

+

R0

+

0
−

C

VC(0−) = 0,

IC(0−) = 0.

• para t = 0+:

−

V

+
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V

R
.

• para t ≥ 0 (t → +∞)

−

V

+

R0

+
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VC(∞) = V,

IC(∞) = 0.
−

Pode-se obter agora a equação diferencial do circuito a partir da lei de Kirchhoff:

IR = IC

V − VC

R
= C

∂VC

∂t
∂t

C R
=

∂VC

V − VC

=
−∂VC

VC − V
.

(7)

Integrando a expressão anterior, obtém-se a expressão de VC(t):

∫ t

t=0
−

∂τ

R C
=

∫ VC(t)
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R C
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(8)
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−t

R C
= ln
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∣
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∣
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(9)

Determina-se então, a expressão de IC(t) para ∀ t:

IC(t) = C
∂VC(t)

∂t

IC(t) = C ∂





V − V e

(

−t

R C

)





 /∂t

IC(t) = C





0 − V (−1/R C) e

(

−t

R C

)







IC(t) =
V

R
e

(

−t

R C

)

.

(10)

Exemplo 1: supondo um circuito RC série, como visto na Fig. 13, com R = 100, V = 1 e C = 1µ,

as expressões para VC(t) e IC(t) ficam:

VC(t) = 1 − e(−10k t),

IC(t) = 0, 01 e(−10k t).
(11)

A Fig. 14 exibe a resposta de VC(t) e de IC(t) ao degrau unitário. Estes gráficos foram gerados com

o aux́ılio do Matlab.
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Figura 14: Gráficos de VC(t) e IC(t) para o Exemplo 1.

Observando a Fig. 14, vê-se que quando o tempo transcorrido é maior do que cinco (5) constantes

de tempo, t > 5τ (τ = R C = 1 × 10−4), o valor de VC ou IC atinge mais de 99% (99.3) do valor de

regime permanente.

6



Procedimentos Práticos para Solução de Circuitos RC

Os procedimentos apresentados a seguir são úteis ao se trabalhar com circuitos onde os capacitores

já se apresentam carregados e ocorre alguma redistribuição de cargas após uma chave ser fechada ou

uma fonte modificar o seu valor, por exemplo.

Deve-se substituir as condições iniciais por fontes equivalentes. A Fig. 15 exibe um capacitor já

carregado ligado a um circuito e o cálculo de VC(t) nesse caso.
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∫ t
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Figura 15: Circuito com capacitor carregado.

O circuito equivalente com as condições iniciais e finais de tensão sobre o capacitor é visto na Fig. 16.

−

V0 U−1

+

a

+

VC

−
b

Circuito

em t = 0+

−

V0 U−1

+

a

+

VC

−
b

em t = ∞

−

V0 U−1

+

a

+

VC

−
b

Figura 16: Circuito equivalente da Fig. 15.

Obs.: as tensões nos capacitores são as tensões nos conjuntos (capacitor descarregado + fonte).

Exemplo 2: considerando o cicuito visto na Fig. 17, que apresenta dois capacitores já carregados,

uma chave é fechada, em t = 0, colocando um fonte de 40V em paralelo com o circuito RC.

−

40

+

S1

R

+
VC1 = 80

−
C1 = 5

+
VC2 = 40

−
C2 = 20

⇒

−

40

+

R

+
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−
5

+

80
−

+
VC2

−
20

+
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−

Figura 17: Exemplo de distribuição de cargas entre capacitores.

Para t = 0+, deve-se substituir os capacitores descarregados por curto-circuitos, verificando a necessi-

dade de distribuição de cargas. A Fig. 18 exibe a substituição dos capacitores pelos seus equivalentes

para t = 0+ no circuito do Exemplo 2.
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−
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Figura 18: Continuação do Exemplo 1.

Deve-se distribuir todas as tensões pelos capacitores descarregados. Calcula-se, inicialmente, a ca-

pacitância equivalente Ceq:
1

Ceq

=
1

C1

+
1

C2
1

Ceq

=
1

5
+

1

20

Ceq = 4.

(12)

Aplicando a lei de Kirchhoff das tensões, para uma das malhas do circuito visto na Fig. 18, obtém-se:

−40 + VCeq + 80 + 40 = 0

VCeq = 40 − 120.
(13)

onde VCeq é a tensão do capacitor equivalente.

Calcula-se a carga total QT :

QT = Ceq VT

QT = 4 (40 − 120) = −320.
(14)

Obtêm-se por fim, as tensões ´VC1 e ´VC2 distribúıdas entre os capacitores:

´VC1 =
QT

C1

=
−320

5
= −64,

´VC2 =
QT

C2

=
−320

20
= −16.

(15)

Calcule-se então, as tensões finais sobre os capacitores:

VC1 = VC1(0
−

) − ´VC1 = 80 − 64 = 16,

VC2 = VC2(0
−

) − ´VC2 = 40 − 16 = 24.
(16)

Procedimento análogo deve ser feito para t = ∞.

Resposta de Circuitos RL Série a um Degrau

A resposta de um circuito RL série, como visto na Fig. 19, a um degrau de amplitude V será analisada

a seguir.
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Figura 19: Circuito RL série.
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Inicialmente, deve-se obter as condições iniciais de tensão e corrente dos componentes.

• para t ≤ 0− (t → −∞):

−

0

+

R

IL

VL(0−) = 0,

IL(0−) = 0.

• para t = 0+:

−

V

+

R0

+

VL

VL(0+) = V,

IL(0+) = 0.
−

• para t ≥ 0 (t → +∞):

−

V

+

R

IL

VL(∞) = 0,

IL(∞) =
V

R
.

Pode-se obter agora, a equação diferencial do circuito a partir da lei de Kirchhoff:

VL = VR

L
∂IL

∂t
= (I1 − IL) R

R

L
∂t =

∂IL

IL − I1

.

(17)

Integrando a expressão anterior, obtém-se a corrente IL(t):

∫

−t

0

R

L
∂τ =

∫ IL(t)

IL(0)

∂IL

IL − I1
−R t

L
= ln

∣

∣

∣

IL(t) − I1

IL(0) − I1

∣

∣

∣

e

(

−R t

L

)

=
IL(t) − I1

IL(0) − I1

IL(t) = I1 +
(

IL(0) − I1

)

e

(

−R t

L

)

IL(t) =
V

R
+

(

0 −
V

R

)

e

(

−R t

L

)

IL(t) =
V

R

(

1 − e

(

−R t

L

)

)

.

(18)
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Determina-se agora a expressão de VL(t) para ∀ t:

VL(t) = L
∂IL(t)

∂t

VL(t) = L

∂









V

R
−

V

R
e

(

−R t

L

)









∂t

VL(t) = L
(

0 −
V

R

(

−R

L

)

e(−R t/L)
)

VL(t) = V e

(

−R t

L

)

.

(19)

Exemplo 3: supondo um circuito RL série, como visto na Fig. 19, com R = 100, V = 1 e L = 1m,

as expressões para IL(t) e VL(t) ficam:

IL(t) = 0, 01
(

1 − e(−100k t)
)

,

VL(t) = 1 e(−100k t).
(20)

A Fig. 20 exibe a resposta de IL(t) e de VL(t) ao degrau unitário. Estes gráficos também foram

gerados com o aux́ılio do Matlab.
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Figura 20: Gráficos de IL(t) e VL(t).

Observa-se, novamente, que quando o tempo transcorrido é maior do que cinco (5) constantes de

tempo, t > 5 τ (τ = R/L = 1 × 10−5), o valor de VL ou IL atinge mais de 99% do valor de regime

permanente.
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