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Anailise de Circuitos no Dominio Tempo

Equagoes bésicas de tensao e corrente em indutores e capacitores;

Condigoes iniciais e finais de tensao e corrente nos capacitores e indutores;

Ao se iniciar a andlise de circuitos no dominio tempo, deve-se conhecer os modelos no dominio

tempo das principais fungdes que representam as fontes de tensao e corrente (sinais) presentes em

um circuito.

Esses sinais estao associados a

fenomenos fisicos que ocorrem em um circuito; representam o fecha-

mento de uma chave, o decaimento natural da tensao em um elemento do circuito, entre outros.

Sao seis as principais fungoes:

(5) exponencial e (6) senoidal.

(1) impulso unitério, (2) degrau unitdrio, (3) rampa, (4) quadratica,

As equagoes e os graficos dessas fungoes sao vistas a seguir.

1. O gréfico da fungao Impulso Unitario, bem como sua equagao, sao vistos na Fig. 1.
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Figura 1: Fun¢ao Impulso Unitario.

2. O grafico e a equacao da funcao Degrau Unitario sao vistos na Fig. 2.
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Figura 2: Funcao Degrau Unitério.



3. A equacao e o grafico da funcao Rampa sao vistos na Fig. 3.
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Figura 3: Funcao Rampa.

4. A Fig. 4 exibe a fungao Quadratica.
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Figura 4: Funcao Quadratica.

5. Ja a Fig. 5 mostra a fung¢ao Exponencial.
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Figura 5: Funcao Exponencial.

6. Por fim, o grafico e equacao da fungao Senoidal sao exibidos na Fig. 6.
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Figura 6: Fungao Senoidal.

posterior a t = 0, respectivamente.

L. = fluxo magnético/corrente = Weber/Ampére = henry.

t<0
t>0.

Obs.: defini-se o instante de tempo ¢ = 0 o momento inicial em que ocorrre alguma transicao no
circuito, tal como uma chave abrindo ou fechando, um sinal (fonte) sendo “ligado”ao circuito, entre

outros. Ainda, defini-se também os intantes ¢ = 0_ e t = 0, os intantes imediatamente anterior e

A capacidade que um condutor possui de induzir tensao em si mesmo quando a corrente varia é a

sua auto-indutdncia ou simplesmente indutdncia, simbolizada pela letra L !, medida em henrys (H).



Em outras palavras, a indutancia é a propriedade de um circuito fazer oposicao a qualquer mudanca

na circulagao de corrente.

Um indutor é uma bobina de indugao (condutor enrolado), usado para introduzir uma indutancia
em um circuito. O comportamento dos indutores se baseia em fenomenos associados a campos
magnéticos produzidos por correntes elétricas. Quando ha variacao de corrente elétrica, o campo

magnético produzido por esta corrente também varia.

O simbolo do indutor é visto na Fig. 7.
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Figura 7: Simbolo do indutor.

A tensao entre os terminais de um indutor é proporcional a taxa de variacao da corrente que o

percorre. Matematicamente, a relagao é a seguinte:

o1y,
V=L —. 1
L T (1)
Integrando a expressao anterior, obtém-se a corrente [:
1t 1 gt
h:f/ w@m:f/n@m+h@. 2)
L —00 L 0

Em um instante infinitesimal de tempo, entre 0_ e 0, por exemplo, tem-se:
1 =0+

L) =1 J_,

Vi (t) 9t = 0. (3)

Ou seja, nao é possivel modificar a corrente no indutor de modo instantaneo, a nao ser que V;, = oo.
Capacitor

Um capacitor é um dispositivo elétrico formado por duas placas condutoras de metal separadas por
um material isolante chamado dielétrico. O comportamento dos capacitores se baseia em fendmenos

associados a campos elétricos, armazenando a carga elétrica no dielétrico.

A capacitancia é a capacidade de armazenamento de carga elétrica, simbolizada pela letra C 2, medida
em farads (F).
O simbolo do capacitor ¢é visto na Fig. 8.
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Figura 8: Simbolo do capacitor.

A corrente do capacitor é proporcional a taxa de variagao da tensao entre os terminais do capacitor.

Matematicamente, a relagao é a seguinte:

Ve
le =0 =2, (4)

Integrando a expressao anterior, obtém-se a tensao Vg:

%:é/;h@m:éﬁk@m+%@. (5)

2C = quantidade de carga/tensao = Coulomb/Volt = farad.



Em um instante de infinitesimal de tempo, entre 0_ e 0, por exemplo, tem-se:

1 t=04

Vel) =& Jio.

Io(t) 0t = 0. (6)

Ou seja, nao é possivel modificar a tensao no capacitor de modo instantaneo, a nao ser que I = oo.
Condicoes Iniciais e Finais de Tensao e Corrente em Capacitores e Indutores

Algumas consideragoes importantes, vistas a seguir, podem ser feitas a respeito do comportamento

inicial e final das tensoes e correntes nos capacitores e indutores.

e Indutor para ¢t = 0: a corrente que atravessa um indutor nao pode variar instantaneamente; assim,

o indutor comporta-se como um circuito aberto, como visto na Fig. 9.
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Figura 9: Comportamento do indutor para ¢t = 0.

e Indutor para t = oo: quando a corrente que atravessa um indutor é constante, a tensao é nula; isto

é, o indutor se comporta como um curto-circuito, conforme visto na Fig. 10.

Figura 10: Comportamento do indutor para t = oo.

e Capacitor para t = 0: a tensao entre os terminais de um capacitor nao pode variar instantanea-

mente; ou seja, o capacitor comporta-se como um curto-circuito, como visto na Fig. 11.
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Figura 11: Comportamento do capacitor para t = 0.

e Capacitor para t = co: quando a tensao é constante, a corrente em um capacitor é nula; isto é, o

capacitor se comporta como um circuito aberto, conforme visto na Fig. 12.
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Figura 12: Comportamento do capacitor para t = oo.



Resposta de Circuitos RC Série a um Degrau

A resposta de um circuito a aplicagdo abrupta de uma tensao ou corrente é conhecida como resposta
a um degrau. A resposta de um circuito, Fig. 13, a um degrau de amplitude V sera descrita a seguir.
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Figura 13: Circuito RC série.
Inicialmente, deve-se obter as condicoes iniciais de tensao e corrente dos componentes do circuito.

e parat < 0_ (t — —o0):

_l’_

o) 00 I0)=

e parat = 04:

) VC(0+) = 07
p v
V() Je Io(04) = ik
e
e parat > 0(t — +00)
0o R
l Vc(OO) = V,

Pode-se obter agora a equacao diferencial do circuito a partir da lei de Kirchhoff:

I = I¢
VoVe _ 0%
R. ot (7)
o Vg =0V
CR V-V Vo=V’
Integrando a expressao anterior, obtém-se a expressao de Vg (t):
/t or o Vel(t) —@VC
- RC / Vo=V
t=0 e Vo) Vo s ®)
—_— = In VC -V
R C 0 Ve (0)




—t Vc(t)—V|
RC Ve(0) -V
—t
€<RC> _ Ve(t) -V
Ve(0) =V
<—t> (9)
Volt) = V4 [Ve(0) - V]e \TC

Determina-se entdo, a expressao de I (t) para V t:

Io(t) = C 8I/§t(t)
c)
Ic(t)y=C0 (V - Ve(R ¢ ) /ot
(7c) "
Ict)=C |0-V (=1/RC)e\RC )

—t
v (7c)
[C(t) = E (& RC
Exemplo 1: supondo um circuito RC série, como visto na Fig. 13, com R =100, V =1e C' = 1pu,
as expressoes para Vo (t) e Io(t) ficam:
Ve(t) = 1 (710K, )
Io(t) = 0,01 e(—10k?),

A Fig. 14 exibe a resposta de Vi (t) e de Io(t) ao degrau unitario. Estes gréficos foram gerados com
o auxilio do Matlab.
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Figura 14: Gréficos de Vi(t) e I¢(t) para o Exemplo 1.

Observando a Fig. 14, vé-se que quando o tempo transcorrido é maior do que cinco (5) constantes
de tempo, t > 57 (1 =R C =1 x 107%), o valor de V ou I¢ atinge mais de 99% (99.3) do valor de

regime permanente.



Procedimentos Praticos para Solugao de Circuitos RC

Os procedimentos apresentados a seguir sao uteis ao se trabalhar com circuitos onde os capacitores
ja se apresentam carregados e ocorre alguma redistribuicao de cargas apds uma chave ser fechada ou

uma fonte modificar o seu valor, por exemplo.

Deve-se substituir as condigoes iniciais por fontes equivalentes. A Fig. 15 exibe um capacitor ja

carregado ligado a um circuito e o célculo de Vi (t) nesse caso.

Volt) = & /_ (1) o1
Ve | we=g [ et a“*/ZC
) = Circuito Volt) = Vo Uy + é /t (1) 01

Figura 15: Circuito com capacitor carregado.

O circuito equivalente com as condigoes iniciais e finais de tensao sobre o capacitor é visto na Fig. 16.
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Figura 16: Circuito equivalente da Fig. 15.

Obs.: as tensoes nos capacitores sao as tensoes nos conjuntos (capacitor descarregado + fonte).

Exemplo 2: considerando o cicuito visto na Fig. 17, que apresenta dois capacitores ja carregados,

uma chave ¢ fechada, em ¢t = 0, colocando um fonte de 40V em paralelo com o circuito RC.
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Figura 17: Exemplo de distribuicao de cargas entre capacitores.

Para t = 0, deve-se substituir os capacitores descarregados por curto-circuitos, verificando a necessi-
dade de distribuicao de cargas. A Fig. 18 exibe a substituicao dos capacitores pelos seus equivalentes

para t = 04 no circuito do Exemplo 2.



40//120 — Precisa redistribuir.

Figura 18: Continuacao do Exemplo 1.

Deve-se distribuir todas as tensoes pelos capacitores descarregados. Calcula-se, inicialmente, a ca-

pacitancia equivalente Ceg:

L_ 1 1
Cveq—cvl C’2

o (12)
Cq 5 20

Cog = 4.

Aplicando a lei de Kirchhoff das tensoes, para uma das malhas do circuito visto na Fig. 18, obtém-se:

—40 + Vieg +80 +40 =0

13
Veeq = 40 — 120. (13)
onde Ve, € a tensao do capacitor equivalente.
Calcula-se a carga total Qr:
Qr =4 (40 — 120) = —320.
Obtem-se por fim, as tensoes V(:vl e Vég distribuidas entre os capacitores:
, —320
Ver = Qr = —— = —064,
S (15)
Vo = Qr _ =320 _ —16
“<To, T 20
Calcule-se entao, as tensoes finais sobre os capacitores:
Vor =V, — Ve =80 — 64 =16
C1 C1(0-) C1 ; (16)

Voo = Vo) — Voo = 40 — 16 = 24.
Procedimento anélogo deve ser feito para t = co.
Resposta de Circuitos RL Série a um Degrau

A resposta de um circuito RL série, como visto na Fig. 19, a um degrau de amplitude V sera analisada

a seguir.
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Figura 19: Circuito RL série.



Inicialmente, deve-se obter as condigoes iniciais de tensao e corrente dos componentes.

e parat < 0_ (t — —o0):

R
n VW ¢ VL(Of) = 07
0() 1. 1,(0.)=0
I
e parat = 04
0o R
N . Vi(04) =V,
v() w 1:(04) = 0.
e parat > 0(t — 400):
R
n YW ¢ VL(OO) =0,
Vv
V§> \ I1,(c0) = =
T

Pode-se obter agora, a equacao diferencial do circuito a partir da lei de Kirchhoff:
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Integrando a expressao anterior, obtém-se a

faT =
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Determina-se agora a expressao de V(t) para V t:

-1 8I§t(t) 5
o[2-v.T)

Vi(t) = L . (19)

vt =1 (0- 2 (_LR o(—R t/”)

Exemplo 3: supondo um circuito RL série, como visto na Fig. 19, com R =100,V =1e L = 1m,

as expressoes para I (t) e Vi (t) ficam:

() = 0,01 (1—e(T100k)),

Vi(t) = 16(_100kt). (20)

A Fig. 20 exibe a resposta de I (t) e de Vi(t) ao degrau unitdrio. Estes graficos também foram

gerados com o auxilio do Matlab.
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Figura 20: Gréficos de I1(t) e VL().
Observa-se, novamente, que quando o tempo transcorrido é maior do que cinco (5) constantes de

tempo, t > 57 (1 = R/L =1 x 107°), o valor de V7, ou I, atinge mais de 99% do valor de regime

permanente.
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