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Procedimentos Praticos para Solugao de Circuitos RL

Os procedimentos apresentados a seguir, sao tteis ao se analisar circuitos onde os indutores ja se
apresentam carregados e ocorre alguma redistribuicao de fluxos apds uma chave ser fechada ou uma

fonte ter o seu valor alterado, por exemplo.

Deve-se substituir as condicoes iniciais por fontes equivalentes. A Fig. 1 exibe um indutor ja carregado

ligado a um circuito e o célculo de I (t) para este caso.
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Figura 1: Circuito com indutor carregado.

O circuito equivalente com as condigoes iniciais e finais de tensao sobre o indutor é visto na Fig. 2.
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Figura 2: Circuito equivalente da Fig. 1

Exemplo 1: considerando o circuito visto na Fig. 3.
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Figura 3: Exemplo de distribuicao de cargas entre indutores.

Obs.: As correntes nos indutores reais sao as correntes nos conjuntos (indutor descarregado + fonte).



Para t = 0., deve-se substituir os capacitores descarregados por curto-circuitos e fazer indutores
descarregados iguais a um circuito aberto (comportamento instantéaneo), verificando a necessidade
de redistribuicao de fluxos. A Fig. 4 exibe a substituicao dos capacitores e indutores pelos seus

equivalentes para t = 0, no circuito do Exemplo 1.
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Figura 4: Continuacao do Exemplo 1.

Distribue-se todas as correntes (simultaneamente ou por superposi¢ao) pelas indutancias descarre-
gadas nas indutancias inicialmente carregadas. As correntes se dispoem proporcionais aos inversos

das indutéancias (quando em paralelo). A Fig. 5 exibe o circuito equivalente da Fig 4.
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Figura 5: Circuito equivalente da Fig. 4.

Obtém-se as correntes iy, e i1, distribuidas entre os indutores, do seguinte modo:
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Calcule-se entao, as correntes finais sobre os indutores:

i =8—ij =11,2

iLQ = 6 —Zig == 10,8
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Obs.: deve-se observar que as correntes obtidas pela proporcionalidade nao sao as correntes nos
indutores reais e também os sentidos escolhidos para as correntes iy, ir1, 72 €ir2. Procedimento

andalogo se faz para t = oo, mesmo que nao haja necessidade de distribuir fluxos para ¢t = 0., Fig. 6.
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Figura 6: Circuito equivalente da Fig. 4 para t = oo.



Resposta de Circuitos RC a Onda Quadrada

As anélises de circuitos RC e RL até agora se limitaram a ondas do tipo salto. Agora, sera abordado
uma forma de onda pulsada e a resposta de circuitos RC e RL a este tipo de sinal. As ondas
pulsadas sao muito usadas na industria. Instrumentos de medida, equipamentos de comunicacoes,
computadores e sistemas de radar empregam sinais pulsados para controlar operacoes, transmitir

dados e exibir informagoes.

A resposta de um circuito a aplicacao de uma tens@ao ou corrente cuja forma de onda é vista na
Fig. 7, é conhecida como resposta a uma onda quadrada. O sinal visto na Fig. 7 é composto de

pulsos ideais, com cantos bem definidos e plano no topo.

L Va(t)
R 1%
MWN— e r | T~
* VPP
Vo) () Ver  =C T/2 T g
-V oy 1 N

Figura 7: Circuito RC série e onda quadrada.

A resposta de um circuito RC série a uma onda quadrada de amplitude Vpp, tensao de pico-a-pico,
serd descrita a seguir. Inicialmente, deve-se obter as condigoes iniciais de tensao e corrente dos

componentes do circuito:
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Pode-se obter agora, a expressao de Vi(t), para 0 < t < T'/2, a partir da equagao diferencial do

circuito obtida através da lei de Kirchhoff:
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Determina-se entdo, a expressao de I¢(t) para 0 <t < T/2:
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As expressoes completas de Vi (t) e de Io(t) para Vi sdo as seguintes:
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Exemplo 2. Considerando R =100, V =1e C = 1u (T = 10RC), as expressoes Vi (t) e de Io(t),

em resposta a uma onda quadrada, ficam:
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A Fig. 8 exibe a resposta de V¢ (t) e de Io(t) a uma onda quadrada. Estes graficos foram gerados

com o auxilio do Micro-Cap.
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Figura 8: Gréficos de Vi (t) e Io(t).

Quando T'/2 > 57, ou seja, quando T' > 107, o capacitor se carrega totalmente antes de t = T'/2.

Observe que I¢(t) nao passa de uma série de picos muito estreitos.
Resposta de Circuitos RL a Onda Quadrada

A resposta de um circuito RL série, como visto na Fig. 9, a uma onda quadrada de amplitude Vpp

sera analisada a seguir.
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Figura 9: Circuito RL série e onda quadrada.

As condigoes iniciais de tensao e corrente dos componentes sao obtidas a seguir.
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Redezenhando o circuito, como visto na Fig. 10, pode-se obter a expressao de I (t) para 0 <t < T'/2

a partir da equacao diferencial do circuito:
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Figura 10: Circuito RL série modificado.
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Determina-se agora, a expressao de V(t) para 0 <t < T'/2:

— (11)
Vi(t) = L 0—2V<_R)e(l{%t> ’

As expressoes completas de Vi (t) e de I (t) para Vit sdo dadas a seguir.
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Exemplo 3. Considerando R = 100, V =1e L = 1m (T = 10R/L), a Fig. 11 exibe a resposta,
Vi(t) e IL(t), do circuito RL série para V¢ a uma onda quadrada. Estes graficos foram gerados com

o auxilio do Micro-Cap.
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Figura 11: Gréficos de Vi(t) e I ().



Resisténcia Interna das Fontes de Tensao

Toda fonte de tensao, seja ela um gerador, uma bateria ou uma fonte de alimentacao para experiéncias
de laboratério possui uma resisténcia interna. O circuito equivalente da fonte de tensao é entao
parecido com o visto na Fig 12.
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Figura 12: Circuito equivalente de uma fonte de tensao.

Quando uma carga ¢ ligada a fonte, a tensao de saida da fonte diminui devido a queda de tensao na

resisténcia interna.

Aterramento

A importancia da ligagdo a terra e o modo como ela pode ser usada para tornar os circuitos mais
seguros sao tépicos de grande importancia para os estudantes de engenharia elétrica. Em qualquer
ponto no esquema de um circuito onde haja um simbolo de ligacao ao terra, o potencial deve ser

considerado igual a 0 V.

Existem varios tipos de ligacao a terra, dependendo da aplicacao particular. O aterramento por
ligacao ao solo consiste em ligar um circuito diretamente ao solo através de um condutor de baixa

impedancia.

Um segundo tipo de aterramento é a denominada terra do chassi, que pode ser flutuante ou ligada
diretamente ao solo. O nome terra do chassi significa que os potenciais de todos os pontos do circuito
sao medidos em relagdo ao potencial do chassi. Se este nao estiver ligado ao solo (0 V), diz-se que é

flutuante e pode-se associar a ele qualquer valor de tensao para ser usado como referéncia.

O aterramento pode ser particularmente importante nos laboratérios onde sao usados varios instru-
mentos de medida. A fonte de tensao e o osciloscépio da Fig. 13 (a), por exemplo, estao conectados

a terra através dos seus terminais negativos.
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Figura 13: Tlustragao do efeito da terra de um osciloscépio sobre a medida da ddp entre os terminais de um resistor.



Se para medir a voltagem Vg efetuar-se as ligagoes como ilustrado na Fig. 13 (a), estar-se-a criando
uma situacao de risco. Os terminais negativos dos dois equipamentos estao ligados entre si através
da terra, o que faz com que haja um curto-circuito em paralelo com o resistor Ry. Como é o resistor
Ry que limita a corrente do circuito, estd podera atingir valores elevados, capazes de danificar o
osciloscopio ou de produzir outros efeitos perigosos. Deve-se, neste caso, recorrer ao aterramento
flutuante ou intercambiar os resistores, como na Fig. 13 (b). Na configuragao da Fig. 13 (b), as

terras estao, ligadas juntas e o circuito nao é afetado pela introducao do osciloscépio.





