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• Resposta de circuitos RC e RL série a onda quadrada;

• Resistência interna das fontes de tensão e aterramento.

Procedimentos Práticos para Solução de Circuitos RL

Os procedimentos apresentados a seguir, são úteis ao se analisar circuitos onde os indutores já se

apresentam carregados e ocorre alguma redistribuição de fluxos após uma chave ser fechada ou uma

fonte ter o seu valor alterado, por exemplo.

Deve-se substituir as condições iniciais por fontes equivalentes. A Fig. 1 exibe um indutor já carregado

ligado a um circuito e o cálculo de IL(t) para este caso.
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Figura 1: Circuito com indutor carregado.

O circuito equivalente com as condições iniciais e finais de tensão sobre o indutor é visto na Fig. 2.
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Figura 2: Circuito equivalente da Fig. 1

Exemplo 1: considerando o circuito visto na Fig. 3.
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Figura 3: Exemplo de distribuição de cargas entre indutores.

Obs.: As correntes nos indutores reais são as correntes nos conjuntos (indutor descarregado + fonte).
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Para t = 0+, deve-se substituir os capacitores descarregados por curto-circuitos e fazer indutores

descarregados iguais a um circuito aberto (comportamento instantâneo), verificando a necessidade

de redistribuição de fluxos. A Fig. 4 exibe a substituição dos capacitores e indutores pelos seus

equivalentes para t = 0+ no circuito do Exemplo 1.
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8 em série com 6+10 !

Necessário redistribuir fluxos.

Figura 4: Continuação do Exemplo 1.

Distribue-se todas as correntes (simultaneamente ou por superposição) pelas indutâncias descarre-

gadas nas indutâncias inicialmente carregadas. As correntes se dispõem proporcionais aos inversos

das indutâncias (quando em paralelo). A Fig. 5 exibe o circuito equivalente da Fig 4.
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Figura 5: Circuito equivalente da Fig. 4.

Obtêm-se as correntes ´iL1 e ´iL1, distribúıdas entre os indutores, do seguinte modo:

´iL1 =
1/3

1/3 + 1/2
(8 − 6 − 10) = −3, 2

´iL2 =
1/2

1/2 + 1/3
(8 − 6 − 10) = −4, 8.

(1)

Calcule-se então, as correntes finais sobre os indutores:

iL1 = 8 − ´iL1 = 11, 2

iL2 = 6 − ´iL2 = 10, 8.
(2)

Obs.: deve-se observar que as correntes obtidas pela proporcionalidade não são as correntes nos

indutores reais e também os sentidos escolhidos para as correntes iL1, ´iL1, iL2 e ´iL2. Procedimento

análogo se faz para t = ∞, mesmo que não haja necessidade de distribuir fluxos para t = 0+, Fig. 6.
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Figura 6: Circuito equivalente da Fig. 4 para t = ∞.

2



Resposta de Circuitos RC a Onda Quadrada

As análises de circuitos RC e RL até agora se limitaram a ondas do tipo salto. Agora, será abordado

uma forma de onda pulsada e a resposta de circuitos RC e RL a este tipo de sinal. As ondas

pulsadas são muito usadas na indústria. Instrumentos de medida, equipamentos de comunicações,

computadores e sistemas de radar empregam sinais pulsados para controlar operações, transmitir

dados e exibir informações.

A resposta de um circuito à aplicação de uma tensão ou corrente cuja forma de onda é vista na

Fig. 7, é conhecida como resposta a uma onda quadrada. O sinal visto na Fig. 7 é composto de

pulsos ideais, com cantos bem definidos e plano no topo.
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Figura 7: Circuito RC série e onda quadrada.

A resposta de um circuito RC série a uma onda quadrada de amplitude VPP , tensão de pico-a-pico,

será descrita a seguir. Inicialmente, deve-se obter as condições iniciais de tensão e corrente dos

componentes do circuito:
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Pode-se obter agora, a expressão de VC(t), para 0 < t < T/2, a partir da equação diferencial do

circuito obtida através da lei de Kirchhoff:

IR = IC
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∂t
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=
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(3)

Integrando a expressão anterior, obtém-se a expressão de VC(t):
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Determina-se então, a expressão de IC(t) para 0 < t < T/2:
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As expressões completas de VC(t) e de IC(t) para ∀ t são as seguintes:
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Exemplo 2. Considerando R = 100, V = 1 e C = 1µ (T ∼= 10RC), as expressões VC(t) e de IC(t),

em resposta a uma onda quadrada, ficam:

VC(t) =







1 − 2e(−10k t) : KT ≤ t < (2K + 1)T/2

−1 + 2e(−10k t) : (2K + 1)T/2 ≤ t∗ ≤ (K + 1)T,
(8)

IC(t) =







0, 02e(−10k t) : KT ≤ t < (2K + 1)T/2

−0, 02e(−10k t) : (2K + 1)T/2 ≤ t∗ ≤ (K + 1)T,
(9)

com K = 0, 1, 2, . . . , n p/ ∀ t e t∗ = t − (2K+1)T
2

.

A Fig. 8 exibe a resposta de VC(t) e de IC(t) a uma onda quadrada. Estes gráficos foram gerados

com o aux́ılio do Micro-Cap.

Figura 8: Gráficos de VC(t) e IC(t).

Quando T/2 > 5τ , ou seja, quando T > 10τ , o capacitor se carrega totalmente antes de t = T/2.

Observe que IC(t) não passa de uma série de picos muito estreitos.

Resposta de Circuitos RL a Onda Quadrada

A resposta de um circuito RL série, como visto na Fig. 9, a uma onda quadrada de amplitude VPP

será analisada a seguir.
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Figura 9: Circuito RL série e onda quadrada.

As condições iniciais de tensão e corrente dos componentes são obtidas a seguir.
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• para t ≤ 0− (t → −∞):
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Redezenhando o circuito, como visto na Fig. 10, pode-se obter a expressão de IL(t) para 0 < t < T/2
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Figura 10: Circuito RL série modificado.
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Determina-se agora, a expressão de VL(t) para 0 < t < T/2:
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As expressões completas de VL(t) e de IL(t) para ∀ t são dadas a seguir.
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com K = 0, 1, 2, . . . , n p/ ∀ t e t∗ = t − (2K+1)T
2

.

Exemplo 3. Considerando R = 100, V = 1 e L = 1m (T ∼= 10R/L), a Fig. 11 exibe a resposta,

VL(t) e IL(t), do circuito RL série para ∀ t a uma onda quadrada. Estes gráficos foram gerados com

o aux́ılio do Micro-Cap.

Figura 11: Gráficos de VL(t) e IL(t).
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Resistência Interna das Fontes de Tensão

Toda fonte de tensão, seja ela um gerador, uma bateria ou uma fonte de alimentação para experiências

de laboratório possui uma resistência interna. O circuito equivalente da fonte de tensão é então

parecido com o visto na Fig 12.
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Figura 12: Circuito equivalente de uma fonte de tensão.

Quando uma carga é ligada à fonte, a tensão de sáıda da fonte diminui devido à queda de tensão na

resistência interna.

Aterramento

A importância da ligação à terra e o modo como ela pode ser usada para tornar os circuitos mais

seguros são tópicos de grande importância para os estudantes de engenharia elétrica. Em qualquer

ponto no esquema de um circuito onde haja um śımbolo de ligação ao terra, o potencial deve ser

considerado igual a 0 V.

Existem vários tipos de ligação à terra, dependendo da aplicação particular. O aterramento por

ligação ao solo consiste em ligar um circuito diretamente ao solo através de um condutor de baixa

impedância.

Um segundo tipo de aterramento é a denominada terra do chassi, que pode ser flutuante ou ligada

diretamente ao solo. O nome terra do chassi significa que os potenciais de todos os pontos do circuito

são medidos em relação ao potencial do chassi. Se este não estiver ligado ao solo (0 V), diz-se que é

flutuante e pode-se associar a ele qualquer valor de tensão para ser usado como referência.

O aterramento pode ser particularmente importante nos laboratórios onde são usados vários instru-

mentos de medida. A fonte de tensão e o osciloscópio da Fig. 13 (a), por exemplo, estão conectados

à terra através dos seus terminais negativos.

Figura 13: Ilustração do efeito da terra de um osciloscópio sobre a medida da ddp entre os terminais de um resistor.
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Se para medir a voltagem VR1 efetuar-se as ligações como ilustrado na Fig. 13 (a), estar-se-á criando

uma situação de risco. Os terminais negativos dos dois equipamentos estão ligados entre si através

da terra, o que faz com que haja um curto-circuito em paralelo com o resistor R2. Como é o resistor

R2 que limita a corrente do circuito, está poderá atingir valores elevados, capazes de danificar o

osciloscópio ou de produzir outros efeitos perigosos. Deve-se, neste caso, recorrer ao aterramento

flutuante ou intercambiar os resistores, como na Fig. 13 (b). Na configuração da Fig. 13 (b), as

terras estão, ligadas juntas e o circuito não é afetado pela introdução do osciloscópio.
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