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Sumário

• Solução de circuitos de 2a ordem;

• Operador Diferencial;

• Resposta de circuitos RLC série a onda quadrada.

Solução de Circuitos de 2a Ordem

Nesta aula, a análise de circuitos com indutores e capacitores se limitará aos circuitos RLC ligados

em paralelo e, em especial, ligados em série como visto na Fig. 1.
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Figura 1: Circuitos RLC: a) série e b) paralelo.

Para determinar a resposta dos circuitos RLC é necessário encontrar a equação diferencial para a

tensão ou corrente. Essa equação diferencial apresenta um termo envolvendo a segunda derivada; ou

seja, é uma equação ordinária linear de segunda ordem com coeficientes constantes. Por essa razão,

os circuitos RLC também são conhecidos como circuitos de segunda ordem.

É apresentado a seguir, um roteiro para se obter a solução de circuitos de segunda ordem.

1. Tentar associar elementos até obter um circuito RLC série ou RLC paralelo. Aplicar a lei de Ohm

e as leis de Kirchhoff até encontrar uma equação diferencial do tipo:

∂2f(t)

∂t2
+ 2α

∂f(t)

∂t
+ ω0

2f(t) = g(t). (1)

A Eq. (1) é conhecida como equação caracteŕıstica dos circuitos RLC em série e em paralelo, α é

a frequência de Neper, ω0 a frequência angular de ressonância, g(t) representa algum tipo de sinal

aplicado ao circuito e f(t) a variável de tensão ou corrente em questão.

Caso não seja posśıvel associar os elementos até obter um circuito RLC série ou paralelo, desenvolver

até obter uma equação diferencial de segunda ordem, como visto na Eq. (1).

Obs.: o circuito LC é um caso particular.
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2. Determinar a frequência de Neper (α) e a frequência angular de ressonância (ω0) para cada caso:

• RLC Série: α = R/2L;

• RLC Paralelo: α = 1/2RC;

• RLC Série ou Paralelo: ω0 = 1/
√

LC.

Todas essas frequências têm a dimensão de frequência angular, cuja unidade é o radiano por segundo

(rad/s). A solução da Eq. (1), equação caracteŕıstica, é a seguinte:

f(t) = fN(t) + fF (t), (2)

onde: fN(t) é a resposta natural e fF (t) a resposta forçada.

A resposta natural (impulsiva, transitória), fN(t), são as correntes e tensões que existem quando a

energia armazenada é liberada em um circuito que não contém fontes independentes. Já a resposta

forçada (permanente), fF (t), são as correntes e tensões que resultam de mudanças abruptas das

fontes de tensão e correntes ligadas ao circuito.

3. Determinar a resposta natural. Dependendo dos valores de α e ω0, existem três possibilidades:

• α > ω → o circuito apresenta um comportamento hiper-amortecido (sobreamortecido):

fN(t) = A1e
p1t + A2e

p2t;

p1,2 = −α ±
√

α2 − ω2;
(3)

onde: p1 e p2 são as ráızes da equação caracteŕıstica e A1 e A2 são constantes. Nos circuitos

sobreamortecidos, a resposta tende ao valor de regime permanente mais devagar, sem passar

por oscilações.

• α = ω → o circuito apresenta um comportamento criticamente amortecido:

fN(t) = (A1 + A2t) e−αt. (4)

Trata-se da situação em que o estado final (regime permanente) é atingido o mais rapidamente

posśıvel sem que o sistema oscile.

• α < ω → o circuito apresenta um comportamento hipo-amortecido (subamortecido).

fN(t) =
[

A1 cos(ωd t) + A2 sin(ωd t)
]

e−αt;

ωd =
√

ω2
0 − α2.

(5)

O parâmetro ωd é denominado frequência angular amortecida. Nos circuitos subamortecidos, a

resposta oscila em torno do valor de regime permanente. Os termos hiper, hipo ou criticamente

amortecido descrevem o efeito do elemento dissipativo, resistor, sobre a resposta. Já o valor da

frequência de Neper, α, reflete o efeito do resistor.

4. Determinar a resposta forçada.

• Caso a excitação seja constante para t ≥ 0+, a solução particular pode ser obtida no próprio

circuito fazendo t = ∞ → fF (t) = fF (∞).
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• Caso a excitação não seja constante:

a) é necessário escrever a equação diferencial.

b) usar a seguinte tabela de funções candidatas:

g(t) fF (t)

K t C1t + C0

K tn Cnt
n + . . . + C1t + C0

K e−at C0e
−at

onde: g(t) é a função (sinal) que forçará uma resposta do sistema, fF (t) o modelo de

resposta forçada e K, C0, C1, . . ., Cn são constantes.

c) Substituir fF (t) na equação diferencial e com isto determinar as constantes C0, C1, . . ., Cn

da solução particular.

• Muitas vezes, quando a excitação é uma rampa, ela pode ser transformada (em conjunto com

um L ou C) de modo a obter uma excitação constante, como visto na Fig. 2 e Fig. 3.
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Figura 2: Circuito com rampa e capacitor.
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Figura 3: Circuito com rampa e indutor.

5. Obter f(0+), ´f(0+), fF (0+) e ´fF (0+) usando métodos de análise de circuitos. Determinar então,

as constantes A1 e A2 da solução complementar, resolvendo o sistema de equações visto na Eq. (6),

Eq. (7) e Eq. (8) para cada caso.

•α > ω0 →






f(0+) = A1 + A2 + fF (0+);
´f(0+) = p1A1 + p2A2 + ´fF (0+).

(6)

•α = ω0 →






f(0+) = A1 + fF (0+);
´f(0+) = −αA1 + A2 + ´fF (0+).

(7)

•α < ω0 →






f(0+) = A1 + fF (0+);
´f(0+) = −αA1 + ωdA2 + ´fF (0+).

(8)
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6. Escrever a resposta completa. A Eq. (8) exibe a resposta completa para cada situação.

•α > ω0 → f(t) = A1e
p1t + A2e

p2t + fF (t);

•α = ω0 → f(t) =
(

A1 + A2 t
)

e−αt + fF (t);

•α < ω0 → f(t) =
[

A1 cos(wd t) + A2 sin(wd t)
]

e−αt + fF (t).

(9)

Obs.: caso fF (t) = Kebt ⇒ b 6= p1, b 6= p2 e b 6= −α.

Operador Diferencial

O operador Diferencial, D, é usado na solução de equações diferenciais.

Dg(t) =
∂g(t)

∂t
=

1

∂t

∫ t

0
f(t)∂t = f(t);

D−1f(t) =
∫ t

0
f(t)∂t = g(t).

(10)

Propriedades:

D−1f(t) =
f(t)

D
; (11a)

DD−1f(t) = f(t); (11b)

D2f(t) =
∂2f(t)

∂t2
; (11c)

D[f1(t) + f2(t)] = Df1(t) + Df2(t). (11d)

Aplicando o operador D em circuitos com capacitores:

IC = C
∂VC

∂t
= CDVC ; (12a)

VC =
1

C

∫

IC∂t =
IC

CD
. (12b)

Aplicando o operador D em circuitos com indutores:

VL = L
∂IL

∂t
= LDIL; (13a)

IL =
1

L

∫

VL∂t =
VL

LD
. (13b)

Exemplo 1. O circuito visto na Fig. 4, estava em regime permanente para t = 0−. Determine a

equação caracteŕıstica de i3(t), utilizando o operador D. Dado: V (t) = 8 t2 U−1 + 20.

−
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Figura 4: Circuito do Exemplo 1.

Solução: aplicando a lei de Kirchhoff das tensões na primeira malha, obtém-se:

−6i3 −
i3

0, 5D
− 2i1 + 20 = 0

−6Di3 − 2i3 − 2Di1 = 0

i1 = −3i3 −
i3
D

.

(14)
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Agora na segunda malha:

−20 + 2i1 + 2Di2 − V (t) = 0

2i1 + 2Di2 = 8t2 + 40

i2 =
4t2

D
+

40

D
− i1

D
.

(15)

Aplicando a lei de Kirchhoff das correntes, temos:

i3 + i2 − i1 = 0. (16)

Substituindo, as Eqs. (14) e (15) na Eq. (16), obtém-se a equação caracteŕıstica:

i3 +
4t2

D
+

40

D
+

3i3
D

+
i3
D2

+ 3i3 +
i3
D

= 0

D2i3 + D4t2 − D40 + 3Di3 + i3 + 3D2i3 + Di3 = 0

(4D2 + 4D + 1) i3 = −8t.

(17)

Resposta de Circuitos RLC Série a Onda Quadrada

A resposta de um circuito RLC série a uma onda quadrada de amplitude VPP , como visto na Fig. 5,

será descrita a seguir.
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Figura 5: Circuito RLC série e onda quadrada.

Inicialmente, deve-se obter as condições iniciais e finais de tensão e corrente dos componentes do

circuito RLC:

• para t ≤ 0− (t → −∞):

+

V

− R

VRI
L

+VL −
+

VC

I(0−) = 0,
VR(0−) = 0,
VL(0−) = 0,
VC(0−) = −V.−

C

• para t = 0+:

+

V

−
R

VRI
L

+ VL −

C
−

VC(0−)
+

I(0+) = 0,
VR(0+) = 0,
VL(0+) = V − VC(0−) = 2V,

∂IL(0+)

∂t
=

VL

L
=

2V

L
,

∂VC(0+)

∂t
=

IC

C
= 0.
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• para t ≥ 0 (t → +∞):

−
V

+ R

VRI
L

+VL −
+

VC

I(+∞) = 0,
VR(+∞) = 0,
VL(+∞) = 0,
VC(+∞) = V.−

C

Determina-se o modelo de resposta forçada; neste caso, constante e igual a V e −V , para cada

intervalo de tempo igual a T/2. Avalia-se então, o comportamento do circuito: hipo, hiper ou

criticamente amortecido através do cálculo de α e ω0.

Por exemplo, obtendo IL(t) para um circuito RLC série hiper-amortecido (para 0 < t < T/2):

Geral















IL(t) = A1e
p1t + A2e

p2t + IL(∞),

IL(0+) = A1 + A2 + IL(∞),
´IL(0+) = p1A1 + p2A2.

(18)

Determina-se, então, as constantes A1 e A2 da solução complementar, resolvendo o sistema de

equações visto na Eq. (19).










0 = A1 + A2 + 0,
2V

L
= p1A1 + p2A2.

(19)

Assim, a corrente IL(t) é:

IL(t) = A1e
p1t + A2e

p2t. (20)

A expressão completa de IL(t) para ∀ t é a seguinte:

IL(t) =







A1e
p1t + A2e

p2t : KT ≤ t < (2K + 1)T/2,

−A1e
p1t − A2e

p2t : (2K + 1)T/2 ≤ t∗ ≤ (K + 1)T,
(21)

com K = 0, 1, 2, . . . , n para ∀ t e t∗ = t − (2K+1)T
2

.

Exemplo 2. A Fig. 6 exibe a resposta de IL(t) de um circuito RLC série a uma onda quadrada

considerando L = 1m, C = 1µ, R = 25, 65 e 150 (T ∼= 30/ω0). Estes gráficos foram gerados com o

aux́ılio do Micro-Cap.

Figura 6: Gráficos de IL(t).

Observa-se que quanto menor o valor de R, mais oscilatória fica a resposta de IL(t).

6




