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Solucao de Circuitos de 2¢ Ordem

Nesta aula, a analise de circuitos com indutores e capacitores se limitara aos circuitos RLC ligados

em paralelo e, em especial, ligados em série como visto na Fig. 1.
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Figura 1: Circuitos RLC: a) série e b) paralelo.

Para determinar a resposta dos circuitos RLC é necesséario encontrar a equacao diferencial para a
tensao ou corrente. Essa equacao diferencial apresenta um termo envolvendo a segunda derivada; ou
seja, é uma equacao ordinaria linear de segunda ordem com coeficientes constantes. Por essa razao,

os circuitos RLC também sao conhecidos como circuitos de segunda ordem.
E apresentado a seguir, um roteiro para se obter a solucao de circuitos de segunda ordem.

1. Tentar associar elementos até obter um circuito RLC série ou RLC paralelo. Aplicar a lei de Ohm

e as leis de Kirchhoff até encontrar uma equagao diferencial do tipo:

PIE) |, 000

o2 ot +wof(t) = g(t). (1)

A Eq. (1) é conhecida como equacao caracteristica dos circuitos RLC em série e em paralelo, « é
a frequéncia de Neper, wy a frequéncia angular de ressonancia, g(t) representa algum tipo de sinal

aplicado ao circuito e f(t) a varidvel de tensao ou corrente em questao.

Caso nao seja possivel associar os elementos até obter um circuito RLC série ou paralelo, desenvolver

até obter uma equagao diferencial de segunda ordem, como visto na Eq. (1).

Obs.: o circuito LC é um caso particular.



2. Determinar a frequéncia de Neper (a) e a frequéncia angular de ressonancia (wp) para cada caso:
e RLC Série: a = R/2L;
e RLC Paralelo: o = 1/2RC

e RLC Série ou Paralelo: wy = 1/v LC.

Todas essas frequéncias tém a dimensao de frequéncia angular, cuja unidade é o radiano por segundo

(rad/s). A solugao da Eq. (1), equagao caracteristica, é a seguinte:

f@) = fn() + fr(t), (2)

onde: fy(t) é a resposta natural e fr(t) a resposta forgada.

A resposta natural (impulsiva, transitoria), fy(t), sdo as correntes e tensoes que existem quando a
energia armazenada é liberada em um circuito que nao contém fontes independentes. J4 a resposta
forcada (permanente), fr(t), sdo as correntes e tensdes que resultam de mudangas abruptas das

fontes de tensao e correntes ligadas ao circuito.

3. Determinar a resposta natural. Dependendo dos valores de a e wy, existem trés possibilidades:
e o > w — o circuito apresenta um comportamento hiper-amortecido (sobreamortecido):

In(t) = AreP! 4+ AgeP?;
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onde: p; e py s@0 as raizes da equacao caracteristica e A; e Ay sdo constantes. Nos circuitos
sobreamortecidos, a resposta tende ao valor de regime permanente mais devagar, sem passar

por oscilagoes.

e o = w — 0 circuito apresenta um comportamento criticamente amortecido:
fN(t) = (Al + Agt) €7at. (4)

Trata-se da situagao em que o estado final (regime permanente) é atingido o mais rapidamente

possivel sem que o sistema oscile.

e o < w — 0 circuito apresenta um comportamento hipo-amortecido (subamortecido).

In(t) = {Al cos(wqt) + Agsin(wy t)} e 5)
wg = Jwg — a2

O parametro wy é denominado frequéncia angular amortecida. Nos circuitos subamortecidos, a
resposta oscila em torno do valor de regime permanente. Os termos hiper, hipo ou criticamente
amortecido descrevem o efeito do elemento dissipativo, resistor, sobre a resposta. Ja o valor da

frequéncia de Neper, a, reflete o efeito do resistor.
4. Determinar a resposta forcada.

e Caso a excitagao seja constante para t > 0., a solugao particular pode ser obtida no préprio

circuito fazendo t = co — fr(t) = fp(00).



e Caso a excitacao nao seja constante:

a) ¢ necessario escrever a equagao diferencial.

b) usar a seguinte tabela de funges candidatas:

g(t) | fr(t)

Kt Cit + Cy

Ktr Cot" + ...+ Cit + Oy
K e | Cpecat

onde: ¢(t) é a funcao (sinal) que forgard uma resposta do sistema, fr(f) o modelo de

resposta forcada e K, Cy, C, ..., C, sao constantes.

c) Substituir fr(t) na equagao diferencial e com isto determinar as constantes Cy, C1, ..., C,

da solucgao particular.

e Muitas vezes, quando a excitagdo é uma rampa, ela pode ser transformada (em conjunto com

um L ou C) de modo a obter uma excitagao constante, como visto na Fig. 2 e Fig. 3.
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Figura 2: Circuito com rampa e capacitor.
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Figura 3: Circuito com rampa e indutor.

5. Obter f(0;), f(0+), fr(04) e fF(0+) usando métodos de andlise de circuitos. Determinar entao,
as constantes A; e Ay da solugdo complementar, resolvendo o sistema de equagoes visto na Eq. (6),
Eq. (7) e Eq. (8) para cada caso.

f(0+) = A+ Ay + fF(O-F);/
f(04) = prAy + p2 Ao + fr(04).

o0 = Wy — f(Q+)=A1+fF(0+); /
0 f(04) = —adA; + Ay + f2(04).

(04) = Ar+ fr(04); ,
(O+ = —OéAl + wdAg + fF(O—l—)

(6)
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6. Escrever a resposta completa. A Eq. (8) exibe a resposta completa para cada situagao.

oa > wy — f(t) = APt + Are”' + fr(t);
ea=wy— f(t)= ( 1+A2t> Mt fe(t);
e <wy— ft) = [Al cos(wgt) + Ay Sln(wdt)] t fr(t).

Obs.: caso fr(t) = Ke® = b#p, b#pseb# —a.
Operador Diferencial

O operador Diferencial, D, é usado na solu(;éo de equacoes diferenciais.

Do) = 47 8t 8t/ )
D7) = [ 1ot = o)

Propriedades:
oy - I
DD7Uf(t) = f(t);
62
gy = 200,
]

D[fi(t) + f2( )

Aplicando o operador D em circuitos com capacitores:

= D) + Dfa(t).

oV,
I = C—C = CDVC,
Ve = / Ieot = =S
C C CD
Aplicando o operador D em circuitos com indutores:
Vp = L% = LDIy;
I, = / Vot =

Exemplo 1. O circuito visto na Fig. 4, estava em regime permanente para t = 0_.

equagao caracteristica de i3(t), utilizando o operador D. Dado: V() = 8t*U_; + 20.

%

Figura 4: Circuito do Exemplo 1.
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Solucao: aplicando a lei de Kirchhoff das tensoes na primeira malha, obtém-se:

iy — —2 _9i, 420 =0

0,5D
—6D1i3 — 203 —2Di; =0
. 1
11 = —323 — 53

(10)

(13a)
(13b)

Determine a

(14)



Agora na segunda malha:
—20 + 2iy +2Diy — V() =0

%y + 2Diy = 812 + 40 (15)
A LA 4
“=pTD D

Aplicando a lei de Kirchhoff das correntes, temos:
13+ 1y — 11 = 0. (16)

Substituindo, as Eqgs. (14) e (15) na Eq. (16), obtém-se a equagao caracteristica:

4% 40 | 3iy | i is
. b8 g
b+ 5+t Tttty ;
D% + D4t> — D40 + 3Dy + i5 + 3D%i3 + Diy = 0 (17)

(4D + 4D + 1) i3 = —8t.

Resposta de Circuitos RLC Série a Onda Quadrada

A resposta de um circuito RLC série a uma onda quadrada de amplitude Vpp , como visto na Fig. 5,

serd descrita a seguir.
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Figura 5: Circuito RLC série e onda quadrada.

Inicialmente, deve-se obter as condigoes iniciais e finais de tensao e corrente dos componentes do
circuito RLC:

e parat < 0_ (t — —oo):

Vi Vi _
Lt 10.) =0,
- R Lot weo) =0,
v() C Ve Vi(0)=0,
+ T_ VC(O_) = -V
e parat = 04
1%
Lt Ve 100.) =0,
| B C Va(04) =0,
— Vi(04) =V = Ve(0-) =2V,
VQ Vol0.) 0Ip(0y) _ Vi _ 2V
+ oo L L’
WVo(04) _ Io _ 0
ot c



e parat > 0(t — +00):

—>—‘I VVVR\/_.—.j—i_ VL - ] (+OO =
+ R L + VR(+OO) =0,
v() C Ve  Vi(+oo)=0,

Determina-se o modelo de resposta forcada; neste caso, constante e igual a V e —V, para cada
intervalo de tempo igual a T/2. Avalia-se entao, o comportamento do circuito: hipo, hiper ou

criticamente amortecido através do cédlculo de a e wy.
Por exemplo, obtendo Iy (t) para um circuito RLC série hiper-amortecido (para 0 < ¢t < T'/2):
]L(t) = Aleplt + A2€p2t + IL(OO),
Geral ]L( ) :A1+A2+IL( ), (18)
11(04) = prAs + p2Aa.
Determina-se, entao, as constantes A; e A; da solucao complementar, resolvendo o sistema de

equagoes visto na Eq. (19).
0=A; + Ay +0,

oV (19)
I - p1A; + p2As.
Assim, a corrente I (t) é
IL(t) = APt + AgeP?, (20)
A expressao completa de I (t) para Vit é a seguinte:
Ajent 4 Agert . KT <t < (2K + 1)T/2,
IL(t) = ) . . (21)
—AjePrt — Age?t o 2K+ 1)T/2<t" < (K+ 1T,
com K =0,1,2,..., nparthet*:t—w.

Exemplo 2. A Fig. 6 exibe a resposta de I(t) de um circuito RLC série a uma onda quadrada
considerando L = 1m, C' = 1u, R = 25, 65 e 150 (T = 30/wy). Estes graficos foram gerados com o

auxilio do Micro-Cap.
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Figura 6: Gréficos de I (t).

Observa-se que quanto menor o valor de R, mais oscilatéria fica a resposta de I7,(t).





