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Espaço de Estados

Circuitos lineares podem ser descritos por equações diferenciais lineares. Para um circuito com

diversos indutores e capacitores, usualmente tem-se uma equação diferencial de orden n. Através de

substituições de variáveis, essa equação diferencial pode ser escrita como um conjunto de n equações

diferenciais de primeira ordem. Pode-se então, a seguir, escrever esse conjunto de equações na forma

matricial, obtendo-se uma descrição para o circuito na forma das expressões (1a) e (1b):

ẋ = Ax + Bu (1a)

y = Cx + Du. (1b)

onde:

• x é o vetor de estados;

• y é um vetor representando a sáıda (variáveis de interesse) do circuito;

• u é um vetor representando as entradas (fontes) aplicadas ao circuito;

• A, B, C e D são matrizes formadas pelos parâmetros do circuito.

Nota: a expressão (1a) determina a evolução temporal do sistema e a expressão (1b) é apenas um

mapeamento do estado e da entrada para as variáveis de sáıda. Essas expressões podem ser utilizadas

para obter-se a resposta do sistema através de iterações em um computador, utilizando algum método

de integração para isso, como será visto a seguir.

Explicitando os termos de (1a) e (1b), têm-se 1:
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1Considerando somente uma variável de entrada.
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onde: n é o número de variáveis de estado e m o número de variáveis de sáıda.

Autovalores e Autovetores

Dado uma matriz A de dimensão n× n, a definição dos autovalores é a seguinte: λ ∈ C (onde C é o

conjunto dos números complexos) é um autovalor de A se existir um vetor h tal que:

Ah = λh, (4)

onde: h é um vetor qualquer (h 6= 0) e λ um conjunto de autovalores. Neste caso, diz-se que h é um

autovetor de A associado ao autovalor λ.

Desenvolvendo a Eq. (4):

Ah − λh = 0

Ah − λIh = 0

(A − λI)h = 0.

(5)

onde: I é a matriz identidade.

Supondo:

A =

[

a11 a12
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]

, (6)

o sistema de equações lineares tem solução se o determinante de (A − λI) for nulo, isto é:
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(a11 − λ)(a22 − λ) − (a21)(a12) = 0

λ2 + λ(−a11 − a22) + (a11a22 − a21a12) = P (λ) = 0 → λ1 e λ2.

(7)

O polinômio, P (λ), visto na Eq. (7) é conhecido como polinômio caracteŕıstico. Desse polinômio,

obtêm-se os autovalores λ1 e λ2.

Exemplo 1. Considerando A:
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(3 − λ)(15 − 8λ + λ2 − 1) + 1(λ − 3 + 1) + 1(1 − 5 + λ) = 0

−λ3 + 11λ2 − 36λ + 36 = 0

λ3 − 11λ2 + 36λ − 36 = 0

↓

λ1 = 2, λ2 = 3, λ3 = 6 (autovalores).

(9)

Determinação dos Autovetores

Dada uma matriz A[n × n], temos n autovalores λ1, λ2, λ3, . . . , λn. Para cada autovalor tem-se um

autovetor associado:
(A − λ1I)h1 = → obtém − se h1

(A − λ2I)h2 = → obtém − se h2

... =
...

(A − λnI)hn = → obtém − se hn.

(10)

Exemplo 2. Sendo A:

A =
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2 −1

]

(11)

Os autovalores de A são:
λ1 = i,

λ2 = −i.
(12)
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Determinando, primeiro, o autovetor h1 associado ao autovalor λ1:
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Resolvendo o sistema, obtém-se:

h12 = (1 − i)h11. (15)

Arbitrando h11 = 1:
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]

(16)

Determinando o autovetor h2 associado ao autovalor λ2:
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(17)
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Resolvendo o sistema, obtém-se:

h22 =
2

(1 − i)
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h22 = (1 + i)h21.
(19)

Arbitrando h21 = 1, adquire-se:
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(20)

Solução de Circuitos Via Espaço de Estados

São apresentados a seguir, uma série de procedimentos úteis que devem ser realizados para obter-se

a solução de circuitos através de espaço de estados:

• Levantar as equações diferenciais do circuito.

• Montar o sistema de equações visto na Eq. (21a) e (21b) 2:

ẋ = Ax + Bu (21a)

y = Cx + Du (21b)

• Calcular os autovalores e autovetores:
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• Determinar a RT = RN + RF , onde: RT , RN e RF são, respectivamente, a resposta total,

natural e forçada, onde:
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Substitui-se RF na matriz de estados, Eq. (21a), + condições iniciais, assim:

ŔF = ARF + B u. (24)

Por exemplo, supondo RF ⇔ K (constante), → ŔF = 0, obtém-se:

0 = ARF + B u

ARF = −B u

A−1ARF = −A−1B u

RF = −A−1B u.

(25)

2O sistema possui solução se a inversa de A = A−1 existir. A é inverśıvel se o det(A) 6= 0. Caso contrário, o sistema

não possui uma solução única (infinitas soluções).
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Ainda, a resposta natural é:

RN =
n

∑

k=1

Cke
λkthk. (26)

Substituir os autovalores, autovetores e a RF na Eq. (26) e obter as constantes C1, C2, . . ., Cn.

Cne
λn0hn + Cn−1e

λn−10hn−1 + . . . + RF = 0. (27)

• Escrever a resposta total.

RT (t) = Cne
λnthn + Cn−1e

λn−1thn−1 + . . . + C1e
λ1th1 + RF . (28)

No caso dos autovalores, autovetores ou constantes (Cn, Cn−1, . . . , C1) serem números complexos,

deve-se fazer uso de algumas relações matemáticas e/ou identidades trigonométricas (identidade de

Euler, ejφ = cos(φ) + jsen(φ), ou e(a±jb) = ea e±jb , por exemplo) para obter-se uma resposta que

envolva apenas termos reais, como visto a seguir.

[
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[
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K7 cos(K8t) eK9 t + K10 sen(K11t) eK12 t

]

(29)

onde: K1, K2, . . . , K12 são termos reais e constantes.

Matrizes e Vetores no Matlab

Definindo l o número de linhas e c o número de colunas, escreve-se a matriz M [l × c] no Matlab da

seguinte forma:
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Um vetor linha é definido do seguinte modo:

V (1, c) =
[

V1 V2 . . . Vc

]

(31)

Um vetor coluna:
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São apresentados a seguir, alguns exemplos de como acessar os elementos das matrizes e vetores no

Matlab:

V (1, 1) = V11 (33a)

V (2, 3) = V23 (33b)
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V (:, 1) =
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V (1, :) =
[

V1 V2 . . . VC

]

(33d)

Métodos de Integração Numérica

Algumas equações diferenciais possuem solução anaĺıtica e muitas outras não. Embora não exista,

sabe-se que os movimentos descritos por elas existem e seria desejável descrevê-las pelo menos nu-

mericamente. Para isso, há uma série de métodos numéricos, tais como o método de Euler.

Método de Euler

O método de Euler é um método de primeira ordem, pois leva em consideração para os cálculos

apenas o termo linear da expansão em série de Taylor (truncada) da solução da equação diferencial.

O sistema visto em (1a) e (1b), composto de n equações diferenciais pode ser resolvido através de

técnicas de integração numérica, como por exemplo o citado método de Euler.

Discretizando-se a expressão (1a) com um passo de integração T, obtém-se:

x
(

(k + 1)T
)

− x(kT )

T
= Ax(kT ) + Bu(kT ), (34)

ou ainda:

x
(

(k + 1)T
)

= x(kT ) +
(

Ax(kT ) + Bu(kT )
)

T. (35)

Por conveniência de notação, é usual omitir-se o T que está presente em todas as funções, transforman-

do-as em funções do ı́ndice k (k = 0, 1, . . . , n.; n = ts/T ; ts é o tempo de simulação), resultando

em:

x(k + 1) = x(k) +
(

Ax(k) + Bu(k)
)

T. (36)

Note que as condições iniciais são representadas pelo valor inicial de x(k).

Pode-se elaborar então uma rotina em alguma linguagem de programação, por exemplo, utilizando

a Eq. (36) e obter a evolução das variáveis do vetor x.

O método de Euler não é de utilização muito frequente. Os erros introduzidos pela aproximação

podem crescer, nos diversos passos, de uma maneira inaceitável. Entretanto, existem outros métodos

de integração numérica de equações diferenciais de utilização corrente como o método de Jacobi e o

de Gauss-Seidel que apresentam um melhor desempenho.

Aspectos Numéricos

Vários aspectos de caráter numérico se colocam no desenvolvimento de uma rotina de simulação.

Esses aspectos dizem respeito principalmente ao condicionamento numérico dos procedimentos ma-

temáticos utilizados e aos critérios de convergência adotados. Neste âmbito destaca-se, entre outras

questões menores, o passo de integração.

Passo de Integração

A escolha de uma passo de integração constante deve refletir um compromisso entre o tempo de

processamento e a precisão.
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O passo de integração deve ser pequeno o suficiente para que a integração forneça bons resultados.

Entretanto, a escolha de um passo de integração constante e pequeno pode levar a gastos desne-

cessários de tempo de processamento e de armazenamento de dados.

Este compromisso muitas vezes não é atinǵıvel, visto que uma mesma simulação pode conter várias

condições de operação do sistema a ser simulado, sendo que cada uma destas situações exigirá um

passo de integração espećıfico. Quando utiliza-se o passo de integração variável soluciona-se esta

escolha. Deste modo, a rotina determina automaticamente a cada instante de tempo o passo de

integração ótimo segundo algum critério.

A partir de um critério adequado, consegue-se uma economia substancial de tempo de processamento

sem perda de precisão do resultado obtendo o passo de integração a cada instante de tempo.
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