Aula 10 - Espaco de Estados (II) e Circuitos sob Excitacao Senoidal (I)
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e Espaco de estados (II);

Fonte senoidal;

e Nimeros complexos;

Fasores;

e Métodos de solugao de circuitos no dominio da frequéncia.

Geragao de tensao alternada;

Elementos no dominio da frequéncia;

Espaco de Estados (D # 0)

No laboratério anterior, foi abordado somente a descri¢ao de circuitos via espago de estados conside-

rando o vetor D = 0. Nesta aula, serd apresentado um exemplo de descri¢ao de circuitos via espago

de estados com D # 0.

Exemplo 1. Considerando o circuito visto na Fig. 1:
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Figura 1: Circuito RLC do Exemplo 1.
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Assim, x = Ax + Bu fica:

Ve, 0 0 /¢, —1/Cy Ve, 0
v 0 0 0 1/C 1% 0
& | = T B R vl ®
I, ~1/L, 0 =R/, 0 I, 1/L,
I, 1/Ly —1/L, 0 —Ry/L, I, 0

ey = Cx+ Du, lembrando que V, =V — Ry I, é:

Ve,
y 00 —R, 0] | Ve 1
L - ! + V] (4)
v 00 0 1 I, 0

I,

Pode-se observar que neste caso D # 0.

Geragao de Tensao Alternada

Até agora, a analise dos circuitos estava limitada as discussoes sobre circuitos com fontes de tensao
ou corrente continua; agora, serao abordados circuitos alimentados por fontes de tensao ou corrente

que variam com o tempo (alternadas).

Uma tensao alternada ¢é aquela cujo médulo e diregao variam continuamente em intervalos regulares

de tempo. A forma mais comum de onda de uma tensao alternada é a senoidal ilustrada na Fig. 2.
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Figura 2: Forma de onda de tensao alternada.

Uma tensao alternada pode ser produzida por um gerador, chamado de alternador. Os geradores
(alternadores) baseiam-se no principio da inducao eletromagnética: fazendo girar por meio de energia
mecanica um condutor metalico (espira) entre os dois pélos de um ima, gera-se energia elétrica na
espira. Obs.: uma rotacao da espira é chamada de ciclo. O niimero de ciclos por segundo é conhecido
como frequéncia, representada por f, dada em hertz ! (Hz). Um ciclo por segundo ¢ igual a um hertz.
Ja, o intervalo de tempo para que um ciclo se complete é chamado de periodo, T, expresso em

segundos (s). A frequéncia é o reciproco do periodo:
1

= —. 5

f=7 ()

Fonte Senoidal

Um fonte de tensao/corrente ? senoidal (independente ou nao) produz um sinal como visto na Fig. 2.

'Henrique Rodolfo Hertz, fisico aleméao (1857-1894).
2Ser4 utilizado a fonte de tensdo, porém as observacdes também se aplicam a fontes de corrente.



Pode-se expressar a fungao senoidal através da funcao seno ou co-seno. Sera adotado a fungao co-seno

como referéncia. Assim, o valor instantaneo da tensao senoidal é dado pela seguinte equagao:

V =V, cos(wt + ¢), (6)
onde:
e I/ é o valor instantaneo da tensao, V;
e V, é o valor maximo (pico) da tensao, V, = |V |, V;
e ¢ ¢é o angulo de fase, graus;
e w ¢é a frequéncia angular, rad/s.

A frequéncia angular, w, é proporcional a frequéncia f:
w=2nf. (7)

O angulo de fase, ¢, determina o valor da funcao em t = 0; deste modo, esta relacionado ao ponto
da onda periédica no qual inicia-se a medir o tempo. J& o angulo de fase entre duas formas de onda

de mesma frequéncia ¢é a diferenca angular em um dado instante.

Visto que wt e ¢ sao somados para formar o argumento da fungao senoidal, é necessario que sejam

expressos nas mesmas unidades, graus ou radianos. Obs.: nim. de graus = (180° ntim. radianos) /7.

Outra caracteristica importante de uma funcao senoidal é o seu valor médio quadratico ou RMS 3.

O valor RMS de uma funcao periédica, f, é definido como a raiz quadrada do valor médio da funcao

s = [ 0 o ®)

0

ao quadrado:

Deste modo, considerando a tensao senoidal definida na Eq. (6), o valor RMS é:

1 to+T
Verms = \/ / V2 cos?(wt + ¢) Ot. 9)
T to p
Desenvolvendo a Eq. (9), obtém-se:
v
Vims = —=. 10
RMS \/§ ( )

O valor RMS de uma onda senoidal alternada corresponde a mesma quantidade de corrente ou tensao
continua capaz de produzir a mesma poténcia de aquecimento. Por este motivo, o valor de RMS

também ¢é conhecido como valor eficaz.
Numeros complexos

Os numeros complexos surgiram da necessidade da extracao da raiz quadrada de niimeros negativos,
facilitando com isso a solucao de muitas questoes matemadticas. Atualmente, os niimeros complexos
sao amplamente usados em analise de circuitos.

H& duas formas de representar um ntmero complexo: a forma retangular ou cartesiana e a forma

polar ou trigonométrica.

3Do inglés Root Mean Square.



Na forma retangular, um ntmero complexo, n, é escrito em termos de suas componentes real e
imagindaria:

n =R{n} +I{n} =a+ jb, (11)
onde: a é a componente real, b é a componente imagindria e j = v/—1 4.

Na forma polar, um niimero complexo ¢ escrito em termos de um maédulo e um angulo de fase:
n=cel’ =|c| Lo, (12)

onde: ¢ é o modulo de n, ¢ é o angulo de fase, e é a base dos logaritmos naturais.

A identidade de Euler, Eq. (13), relaciona a forma polar a forma retangular de um ntimero complexo:
et1? = cos(¢) & jsen(p). (13)

Assim, para obter um numero complexo na forma retangular a partir da sua forma polar, basta

escrever:
el — c(cos(gb) +j5€n(¢))
ce’® = ceos(¢) + jesen(d) (14)
e’ = a+jb
lel26 = a+jb

J& para obter um niimero complexo na forma polar a partir da sua forma retangular, deve-se escrever:

a+7b = (\/m) e

. (15)
a+jb = |c|lg,

onde:
¢ = arctan (2) . (16)

A representacao grafica de um ntimero complexo é realizada em um plano matematico onde o eixo

vertical representa a componente imagindria e o eixo horizontal sua componente real. A Fig. 3 exibe a

representagao de dois niimeros complexos: ny = a1 +jb; = |c1|Lpreny = —ay—jby = |ca| Lopo.
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Figura 3: Exemplos de niimeros complexos.

O complexo conjugado de um nimero complexo n, indicado pelo asterisco n*, é obtido conservando

a parte real do niimero original e trocando o sinal da parte imaginaria, por exemplo: a+jb — a—jb.

4Na matemética, a notacdo mais comum é i = /—1. Contudo, os engenheiros eletricistas usualmente utilizam a

letra j para representar y/—1 visto que a letra i refere-se geralmente a corrente elétrica.



Ao se trabalhar com nimeros e grandezas complexas, as identidades matematicas a seguir podem

ser bem uteis:

+j* = FI, (17a)
(=)0 = 1, (17h)
1

] = —, 17c

= (17¢)

T2 = 4, (17d)

e T = 1, (17¢)
Jj¢ —Jjé

cos(0) = L (17)
J¢ _ o3¢

sen(p) = ‘ 2]_6 , (17g)

e = cos(¢) — . (17h)

Considerando n = a + jb = | ¢| /¢, tém-se ainda:

nn* = o +b* =7 (18a)

n+n" = 2a, (18b)

n—n" = j2b, (18¢)

n/n* = 1/2¢. (18d)

Fasores

O fasor é um numero complexo usado para representar a amplitude e a fase de uma funcgao senoidal;
ou seja, trata-se de uma entidade com modulo e sentido que varia ao longo do tempo. O comprimento
da seta que representa o fasor num diagrama, semelhante ao visto na Fig. 3, indica o médulo da

tensao alternada. Ja o angulo que a seta forma com o eixo horizontal, indica o angulo de fase.

O conceito de fasor se baseia na identidade de Euler, que relaciona a funcao exponencial a funcao

trigonométrica, conforme visto na Eq. (13) .

Foi adotado, anteriormente, a funcao co-seno como referéncia; assim, ao se trabalhar com fasores,
o eixo de referéncia também serd o eixo dos co-senos (eixo horizontal) e serd considerado o sentido

anti-horario como positivo.
Elementos Passivos no Dominio da Frequéncia

Serao apresentados a seguir a relacao entre a tensao e a corrente na forma fasorial para o resistor,

capacitor e indutor.

Conforme a lei de Ohm, se I = I, cos(wt + ¢1), a tensdo entre os terminais do resistor ¢ a seguinte:
Ve = RI
Ve = RI,[cos(wt+ ¢p)]
Vi = RI[I[{¢;
VR = | VR ’ Z(bVIW

onde: I, é amplitude da corrente em amperes, ¢; o angulo de fase da corrente I, V,, é amplitude da

(19)

tensao em volts e ¢y, o angulo de fase da tensao Vg.

®Supondo V =V, cos(wt + ¢) — V = |V | L $, onde V é um fasor qualquer.

5



Vé-se que na Eq. (19), o resistor nao introduziu nenhuma diferenca de fase entre a tensao e a corrente.

De modo semelhante, usando as indentidades trigonométricas, pode-se obter a tensao entre os ter-

minais do indutor:

V, = jiX,I=jwLI

Vo = (wL/90%) || 26 o)
Vi = wLl/(é+90°

Vi = |Vi|lovy,

onde: ¢y, o angulo de fase da tensao V1. Pode-se observar na Eq. (20), que o indutor introduz uma
diferenca de fase de 90° entre a tensao e a corrente. Na realidade, a tensio estd adiantada de 90° em

relagao a corrente.

J& a tensao entre os terminais do capacitor é dada por:

1
Ve = —jXel=—-+-1
. JwC
Ve = — /=90 1|/
Vo = —54Uer—90)
VC' - |VC|Z¢VC’

onde: ¢y, o angulo de fase da tensdo V. De acordo com a Eq. (21), A tensdo e a corrente em um

capacitor estao defasadas de 90°. Na verdade, a tensao estd atrasada de 90° em relacao a corrente.

Comparando as Egs. (19), (20) e (21), observa-se que todas apresentam a seguinte forma:
V=21 (22)

O termo Z representa a impedancia do elemento, medida em ohms. A impedancia é uma gran-
deza equivalente a resisténcia, indutancia ou capacitancia no dominio do tempo. A parte real da

impedancia é definida como resisténcia, R, e sua parte imaginaria como reatancia, X:
Z=R{Z}+3{Z} =RE;X (). (23)

Deste modo, a impedancia de um resistor, definida como Zg, é simplesmente a resisténcia R. A
impedancia de um capacitor, Z¢, é somente a reatancia X¢ = —1/wC'. J4, a de um indutor, Z;, é

a reatancia X; = wl:

ZR = %{ZR} + %{ZR} = R, (24&)
1 .

Zo = WZc}t+3{Zct = Tl —jXc, (24b)

ZL = gR{ZL} + %{ZL} = ij = jXL (24C)

A reatancia capacitiva X é a oposi¢ao ao fluxo de corrente alternada devido a presenca da capa-
citancia no circuito. A partir da Eq. (7) 9, obtém-se a equagao que permite calcular a reatancia

capacitiva:
1

2w fC
A impedancia no dominio X, é a oposicao a corrente alternada devido a indutancia do circuito. A

Xc (25)

férmula para a reatancia indutiva é:

Xp, = 2rfL. (26)

5Definindo C e L, os valores reativos dependem unicamente da frequéncia do sinal.



O inverso da impedancia é conhecido como admitancia, representado pela letra Y:

Y= (27)

A parte real da admitancia é conhecida como condutancia, representada pela letra G, e a parte

imagindaria, B, como susceptancia:

Y=R{Y}+3{Y} =G+ jB(9). (28)
Ainda:
1 1
YT 2T R x 20
1
G = (29b)
B )1( (29¢)

Observando, novamente, as Egs. (19), (20) e (21), nota-se que a impedéncia do resistor, Zg, é um
operador que modifica somente a escala de corrente. Ja as impedancias do capacitor e indutor,

modificam a fase e a escala de corrente.

O comportamento dos resistores, capacitores e indutores, descrito acima, é extensivo as associagoes.
Assim, a relagdo de fases entre a corrente que flui por um determinado circuito (composto de re-
sistores, indutores e capacitores) e a tensdo dos seus terminais é o angulo da prépria impedancia
apresentada nestes terminais. A Fig. 4 ajuda a ilustrar esta afirmacdo, onde: V' =V, cos(wt + ¢y ),

I =1I,cos(wt + ¢;r) e Z = Z/¢ a impedancia equivalente do circuito.

Circuito RLC

1% |z

Figura 4: Circuito RLC equivalente.

Supondo a tensao adiantada em relacao a corrente, obtém-se:

V =21
||“;||§$V =Z/¢ |I]/¢r
v
o Ml =75 (30)
‘[‘1@/—@51 =Z/l¢
|
v —or = 9.

Por exemplo, analisando as Eqs. (19), (20) e (21), que expressam a relagao entre a tensao e a corrente

em um circuito com somente um resistor, um indutor e um capacitor, respectivamente, e a Eq (30),



pode-se facilmente obter:

dve — b1 = 0° (31a)
dv, —dr = 90, (31b)
Pve —¢r = —90°, (31c)

que correspondem as defasagens anteriormente citadas.

Nota: As leis de Kirchhoff para tensoes e correntes, bem como os métodos das correntes de malha

e das tensoes de nd, no dominio da frequéncia, sao equivalentes as no dominio tempo.

Métodos de Solugao de Circuitos no Dominio da Frequéncia

Sao apresentados a seguir trés métodos de solucao de circuitos no dominio da frequéncia, utilizados

para determinar os médulos e angulos das tensoes e correntes do circuito em questao.
a) Método gréfico.

Baseia-se na representacao grafica de um fasor, semelhante aquela realizada para nimeros complexos,
conforme a Fig. 3. Desenha-se a posicao relativa dos fasores que descrevem o comportamento de um
circuito em um plano matematico onde o eixo vertical representa a componente imaginaria e o eixo
horizontal a componente real dos fasores. A Fig. 5 exibe um exemplo da representagao dos fasores

de tensio e corrente de um circuito RC 7:
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Figura 5: Circuito RC e fasores.

Pode-se calcular o valor de pico, V, do fasor da tensao, V', somando os valores de pico dos fasores

Vi, Vg, e V. Como eles formam um triangulo retangulo:

V] = (Vi + Vie)? + (V)2 (32)

O angulo de fase ¢ entre V' e a tensao dos resistores é expresso de acordo com a seguinte equagao:

Ve

t = — 33
wo = (332)

Ve
= arctan | ———— | . 33b
gb ( VRl + VR2> ( )
O modulo da impedancia do circuito RC é:

| Z] = \/(Ry + Ro)? + X2, (34)

7“Adotando a corrente I como referéncia.



b) Método analitico.

Para resolver um circuito pelo método analitico deve-se, inicialmente, obter as impedancias de todos

elementos. A Fig. 6 exibe o circuito RC da Fig. 5 modificado e suas impedancias:

[ ZRI ZR2
NN/ WA/,
Zp, =R
+|V p cos(wt + ¢v) f !
\ %4 () _— ch ZR2 - R2
— ch = _]XCI

L

Figura 6: Circuito RC da Fig. 5 modificado.

Trata-se entao, a impedancia equivalente do circuito, a corrente e as tensoes dos componentes como

nimeros complexos:

‘ Z | Z¢ = (Rl + RZ) _jXCU (35&)
V]
I = — 20, (35b)
| Z ]
VCl = ZC1 Ia (350)
Vi = Zgpl1, (35d)
Vir, = Zg I (35¢)

O circuito da Fig. 5 apresenta somente uma fonte com uma frequéncia definida. Caso o circuito a
ser analisado apresente excitagoes (fontes) com frequéncias diferentes, deve-se utilizar o principio da

superposicao e tratar as fontes de forma independente.
c) Locus.

Baseia-se no calculo dos fasores para diversos valores de frequéncia, tais como nula, infinita e outros

valores intermediarios adequados. Apresenta um formato de uma circuferéncia ou reta.





