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Introdução

• Espaço de estados (II);

• Geração de tensão alternada;

• Fonte senoidal;

• Números complexos;

• Fasores;

• Elementos no domı́nio da frequência;

• Métodos de solução de circuitos no domı́nio da frequência.

Espaço de Estados (D 6= 0)

No laboratório anterior, foi abordado somente a descrição de circuitos via espaço de estados conside-

rando o vetor D = 0. Nesta aula, será apresentado um exemplo de descrição de circuitos via espaço

de estados com D 6= 0.

Exemplo 1. Considerando o circuito visto na Fig. 1:
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Figura 1: Circuito RLC do Exemplo 1.
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Assim, ẋ = Ax + Bu fica:
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e ẏ = Cx + Du, lembrando que Va = V − R1IL1
, é:
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Pode-se observar que neste caso D 6= 0.

Geração de Tensão Alternada

Até agora, a análise dos circuitos estava limitada às discussões sobre circuitos com fontes de tensão

ou corrente cont́ınua; agora, serão abordados circuitos alimentados por fontes de tensão ou corrente

que variam com o tempo (alternadas).

Uma tensão alternada é aquela cujo módulo e direção variam continuamente em intervalos regulares

de tempo. A forma mais comum de onda de uma tensão alternada é a senoidal ilustrada na Fig. 2.

Figura 2: Forma de onda de tensão alternada.

Uma tensão alternada pode ser produzida por um gerador, chamado de alternador. Os geradores

(alternadores) baseiam-se no prinćıpio da indução eletromagnética: fazendo girar por meio de energia

mecânica um condutor metálico (espira) entre os dois pólos de um ı́mã, gera-se energia elétrica na

espira. Obs.: uma rotação da espira é chamada de ciclo. O número de ciclos por segundo é conhecido

como frequência, representada por f, dada em hertz 1 (Hz). Um ciclo por segundo é igual a um hertz.

Já, o intervalo de tempo para que um ciclo se complete é chamado de peŕıodo, T, expresso em

segundos (s). A frequência é o rećıproco do peŕıodo:

f =
1

T
. (5)

Fonte Senoidal

Um fonte de tensão/corrente 2 senoidal (independente ou não) produz um sinal como visto na Fig. 2.

1Henrique Rodolfo Hertz, f́ısico alemão (1857-1894).
2Será utilizado a fonte de tensão, porém as observações também se aplicam a fontes de corrente.
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Pode-se expressar a função senoidal através da função seno ou co-seno. Será adotado a função co-seno

como referência. Assim, o valor instantâneo da tensão senoidal é dado pela seguinte equação:

V = Vp cos(ωt + φ), (6)

onde:

• V é o valor instantâneo da tensão, V;

• Vp é o valor máximo (pico) da tensão, Vp = |V |, V;

• φ é o ângulo de fase, graus;

• ω é a frequência angular, rad/s.

A frequência angular, ω, é proporcional à frequência f:

ω = 2πf. (7)

O ângulo de fase, φ, determina o valor da função em t = 0; deste modo, está relacionado ao ponto

da onda periódica no qual inicia-se a medir o tempo. Já o ângulo de fase entre duas formas de onda

de mesma frequência é a diferença angular em um dado instante.

Visto que ωt e φ são somados para formar o argumento da função senoidal, é necessário que sejam

expressos nas mesmas unidades, graus ou radianos. Obs.: núm. de graus = (1800 núm. radianos)/π.

Outra caracteŕıstica importante de uma função senoidal é o seu valor médio quadrático ou RMS 3.

O valor RMS de uma função periódica, f , é definido como a raiz quadrada do valor médio da função

ao quadrado:

fRMS =

√

1

T

∫ t0+T

t0
[f(t)]2 ∂t. (8)

Deste modo, considerando a tensão senoidal definida na Eq. (6), o valor RMS é:

VRMS =

√

1

T

∫ t0+T

t0
V 2

p cos2(ωt + φ) ∂t. (9)

Desenvolvendo a Eq. (9), obtém-se:

VRMS =
Vp√

2
. (10)

O valor RMS de uma onda senoidal alternada corresponde à mesma quantidade de corrente ou tensão

cont́ınua capaz de produzir a mesma potência de aquecimento. Por este motivo, o valor de RMS

também é conhecido como valor eficaz.

Números complexos

Os números complexos surgiram da necessidade da extração da raiz quadrada de números negativos,

facilitando com isso a solução de muitas questões matemáticas. Atualmente, os números complexos

são amplamente usados em análise de circuitos.

Há duas formas de representar um número complexo: a forma retangular ou cartesiana e a forma

polar ou trigonométrica.

3Do inglês Root Mean Square.
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Na forma retangular, um número complexo, n, é escrito em termos de suas componentes real e

imaginária:

n = ℜ{n} + ℑ{n} = a + jb, (11)

onde: a é a componente real, b é a componente imaginária e j =
√
−1 4.

Na forma polar, um número complexo é escrito em termos de um módulo e um ângulo de fase:

n = c ejφ = | c | 6 φ, (12)

onde: c é o módulo de n, φ é o ângulo de fase, e é a base dos logaritmos naturais.

A identidade de Euler, Eq. (13), relaciona a forma polar à forma retangular de um número complexo:

e±jφ = cos(φ) ± jsen(φ). (13)

Assim, para obter um número complexo na forma retangular a partir da sua forma polar, basta

escrever:
cejφ = c

(

cos(φ) + jsen(φ)
)

cejφ = c cos(φ) + jcsen(φ)

cejφ = a + jb

| c | 6 φ = a + jb.

(14)

Já para obter um número complexo na forma polar a partir da sua forma retangular, deve-se escrever:

a + jb =
(√

a2 + b2

)

6 φ

a + jb = | c | 6 φ,
(15)

onde:

φ = arctan

(

b

a

)

. (16)

A representação gráfica de um número complexo é realizada em um plano matemático onde o eixo

vertical representa a componente imaginária e o eixo horizontal sua componente real. A Fig. 3 exibe a

representação de dois números complexos: n1 = a1 + j b1 = | c1 | 6 φ1 e n2 = −a2− j b2 = | c2 | 6 φ2.

Real

Imag

c1

c2

−b2

−a2

a1

b1

Figura 3: Exemplos de números complexos.

O complexo conjugado de um número complexo n, indicado pelo asterisco n
∗, é obtido conservando

a parte real do número original e trocando o sinal da parte imaginária, por exemplo: a+j b → a−j b.

4Na matemática, a notação mais comum é i =
√
−1. Contudo, os engenheiros eletricistas usualmente utilizam a

letra j para representar
√
−1 visto que a letra i refere-se geralmente a corrente elétrica.
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Ao se trabalhar com números e grandezas complexas, as identidades matemáticas a seguir podem

ser bem úteis:

±j2 = ∓1, (17a)

(−j)(j) = 1, (17b)

j =
1

−j
, (17c)

e±jπ/2 = ±j, (17d)

e±jπ = −1, (17e)

cos(φ) =
ejφ + e−jφ

2
, (17f)

sen(φ) =
ejφ − e−jφ

2j
, (17g)

e−jφ = cos(φ) − j. (17h)

Considerando n = a + jb = | c | 6 φ, têm-se ainda:

nn
∗ = a2 + b2 = c2, (18a)

n + n
∗ = 2a, (18b)

n − n
∗ = j2b, (18c)

n/n∗ = 16 2φ. (18d)

Fasores

O fasor é um número complexo usado para representar a amplitude e a fase de uma função senoidal;

ou seja, trata-se de uma entidade com módulo e sentido que varia ao longo do tempo. O comprimento

da seta que representa o fasor num diagrama, semelhante ao visto na Fig. 3, indica o módulo da

tensão alternada. Já o ângulo que a seta forma com o eixo horizontal, indica o ângulo de fase.

O conceito de fasor se baseia na identidade de Euler, que relaciona a função exponencial à função

trigonométrica, conforme visto na Eq. (13) 5.

Foi adotado, anteriormente, a função co-seno como referência; assim, ao se trabalhar com fasores,

o eixo de referência também será o eixo dos co-senos (eixo horizontal) e será considerado o sentido

anti-horário como positivo.

Elementos Passivos no Domı́nio da Frequência

Serão apresentados a seguir a relação entre a tensão e a corrente na forma fasorial para o resistor,

capacitor e indutor.

Conforme a lei de Ohm, se I = Ip cos(ωt + φI), a tensão entre os terminais do resistor é a seguinte:

V R = R I

V R = R Ip [cos(ωt + φI)]

V R = R | I | 6 φI

V R = |VR | 6 φVR
,

(19)

onde: Ip é amplitude da corrente em ampères, φI o ângulo de fase da corrente I, Vp é amplitude da

tensão em volts e φVR
o ângulo de fase da tensão V R.

5Supondo V = Vp cos(ωt + φ) → V = |V | 6 φ, onde V é um fasor qualquer.
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Vê-se que na Eq. (19), o resistor não introduziu nenhuma diferença de fase entre a tensão e a corrente.

De modo semelhante, usando as indentidades trigonométricas, pode-se obter a tensão entre os ter-

minais do indutor:
V L = j XL I = j ω L I

V L = (ω L 6 900) | I | 6 φI

V L = ω L Ip 6 (φI + 900)

V L = |VL | 6 φVL
,

(20)

onde: φVL
o ângulo de fase da tensão V L. Pode-se observar na Eq. (20), que o indutor introduz uma

diferença de fase de 900 entre a tensão e a corrente. Na realidade, a tensão está adiantada de 900 em

relação à corrente.

Já a tensão entre os terminais do capacitor é dada por:

V C = −j XC I =
1

j ω C
I

V C =
1

ω C
6 − 900 | I | 6 φI

V C =
Ip

ω C
6 (φI − 900)

V C = |VC | 6 φVC
,

(21)

onde: φVC
o ângulo de fase da tensão V C . De acordo com a Eq. (21), A tensão e a corrente em um

capacitor estão defasadas de 900. Na verdade, a tensão está atrasada de 900 em relação à corrente.

Comparando as Eqs. (19), (20) e (21), observa-se que todas apresentam a seguinte forma:

V = Z I. (22)

O termo Z representa a impedância do elemento, medida em ohms. A impedância é uma gran-

deza equivalente à resistência, indutância ou capacitância no domı́nio do tempo. A parte real da

impedância é definida como resistência, R, e sua parte imaginária como reatância, X:

Z = ℜ{Z} + ℑ{Z} = R ± jX (Ω). (23)

Deste modo, a impedância de um resistor, definida como ZR, é simplesmente a resistência R. A

impedância de um capacitor, ZC , é somente a reatância XC = −1/ωC. Já, a de um indutor, ZL, é

a reatância XL = ωL:

ZR = ℜ{ZR} + ℑ{ZR} = R, (24a)

ZC = ℜ{ZC} + ℑ{ZC} =
1

jωC
= −jXC , (24b)

ZL = ℜ{ZL} + ℑ{ZL} = jωL = jXL. (24c)

A reatância capacitiva XC é a oposição ao fluxo de corrente alternada devido a presença da capa-

citância no circuito. A partir da Eq. (7) 6, obtém-se a equação que permite calcular a reatância

capacitiva:

XC =
1

2πfC
. (25)

A impedância no domı́nio XL é a oposição à corrente alternada devido à indutância do circuito. A

fórmula para a reatância indutiva é:

XL = 2πfL. (26)

6Definindo C e L, os valores reativos dependem unicamente da frequência do sinal.
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O inverso da impedância é conhecido como admitância, representado pela letra Y :

Y =
1

Z
. (27)

A parte real da admitância é conhecida como condutância, representada pela letra G, e a parte

imaginária, B, como susceptância:

Y = ℜ{Y } + ℑ{Y } = G + jB (S). (28)

Ainda:

Y =
1

Z
=

1

R + jX
, (29a)

G 6= 1

R
, (29b)

B 6= 1

X
. (29c)

Observando, novamente, as Eqs. (19), (20) e (21), nota-se que a impedância do resistor, ZR, é um

operador que modifica somente a escala de corrente. Já as impedâncias do capacitor e indutor,

modificam a fase e a escala de corrente.

O comportamento dos resistores, capacitores e indutores, descrito acima, é extensivo às associações.

Assim, a relação de fases entre a corrente que flui por um determinado circuito (composto de re-

sistores, indutores e capacitores) e a tensão dos seus terminais é o ângulo da própria impedância

apresentada nestes terminais. A Fig. 4 ajuda a ilustrar esta afirmação, onde: V = Vp cos(ωt + φV ),

I = Ip cos(ωt + φI) e Z = Z 6 φ a impedância equivalente do circuito.

−
V

I

Circuito RLC

+

Z

Figura 4: Circuito RLC equivalente.

Supondo a tensão adiantada em relação a corrente, obtém-se:

V = ZI

|V | 6 φV = Z 6 φ | I | 6 φI

|V | 6 φV

| I | 6 φI

= Z 6 φ
∣

∣

∣

∣

V

I

∣

∣

∣

∣

6 φV − φI = Z 6 φ

↓
φV − φI = φ.

(30)

Por exemplo, analisando as Eqs. (19), (20) e (21), que expressam a relação entre a tensão e a corrente

em um circuito com somente um resistor, um indutor e um capacitor, respectivamente, e a Eq (30),
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pode-se facilmente obter:

φVR
− φI = 00, (31a)

φVL
− φI = 900, (31b)

φVC
− φI = −900, (31c)

que correspondem as defasagens anteriormente citadas.

Nota: As leis de Kirchhoff para tensões e correntes, bem como os métodos das correntes de malha

e das tensões de nó, no domı́nio da frequência, são equivalentes às no domı́nio tempo.

Métodos de Solução de Circuitos no Domı́nio da Frequência

São apresentados a seguir três métodos de solução de circuitos no domı́nio da frequência, utilizados

para determinar os módulos e ângulos das tensões e correntes do circuito em questão.

a) Método gráfico.

Baseia-se na representação gráfica de um fasor, semelhante àquela realizada para números complexos,

conforme a Fig. 3. Desenha-se a posição relativa dos fasores que descrevem o comportamento de um

circuito em um plano matemático onde o eixo vertical representa a componente imaginária e o eixo

horizontal a componente real dos fasores. A Fig. 5 exibe um exemplo da representação dos fasores

de tensão e corrente de um circuito RC 7:

V

R1I
R2

C1

V cos(ωt + φV )+

−
Real

Imag

VR1I VR2

VC1

V
φ

Figura 5: Circuito RC e fasores.

Pode-se calcular o valor de pico, V , do fasor da tensão, V , somando os valores de pico dos fasores

V R1
, V R2

e V C1
. Como eles formam um triângulo retângulo:

|V | =
√

(VR1
+ VR2

)2 + (VC1
)2. (32)

O ângulo de fase φ entre V e a tensão dos resistores é expresso de acordo com a seguinte equação:

tan φ =
−VC1

VR1
+ VR2

, (33a)

φ = arctan

(

− VC1

VR1
+ VR2

)

. (33b)

O módulo da impedância do circuito RC é:

|Z| =
√

(R1 + R2)2 + XC
2. (34)

7Adotando a corrente I como referência.
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b) Método anaĺıtico.

Para resolver um circuito pelo método anaĺıtico deve-se, inicialmente, obter as impedâncias de todos

elementos. A Fig. 6 exibe o circuito RC da Fig. 5 modificado e suas impedâncias:

V

+

−

V P cos(ωt + φV )

ZR1I ZR2

ZC1

ZR1
= R1

ZR2
= R2

ZC1
= −jXC1

Figura 6: Circuito RC da Fig. 5 modificado.

Trata-se então, a impedância equivalente do circuito, a corrente e as tensões dos componentes como

números complexos:

|Z | 6 φ = (R1 + R2) − j XC1
, (35a)

I =
|V |
|Z |

6 0, (35b)

V C1
= ZC1

I, (35c)

V R1
= ZR1

I, (35d)

V R2
= ZR2

I. (35e)

O circuito da Fig. 5 apresenta somente uma fonte com uma frequência definida. Caso o circuito a

ser analisado apresente excitações (fontes) com frequências diferentes, deve-se utilizar o prinćıpio da

superposição e tratar as fontes de forma independente.

c) Locus.

Baseia-se no cálculo dos fasores para diversos valores de frequência, tais como nula, infinita e outros

valores intermediários adequados. Apresenta um formato de uma circuferência ou reta.
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