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Abstract

This work is focused on the motion control of an underactuated brachiation robot

with 3 links. We present the modeling of the dynamics of the robot and introduce

the application of the model-based predictive control (MPC) using a linearized

model of the system. The robot has 3 revolute joints but only one of them is

actuated, i. e., the robot has less control inputs than degrees of freedom. The

investigation of the MPC to control such a system is due to the fact that MPC is

able to deal with constraints (state or input limitations) in a direct way, obtaining

an optimal control law. Also, it is investigated the use of a linearized model

for prediction of system state. Simulation results are shown for complete arm

switching, as well as some directions for future developments.

Keywords— Brachiation Robot, underactuated systems, Lin-

earized Model Predictive Control.

1 Introduction

In the beginning of the past decade a new type of robot was

proposed in [1], presenting a six-link fully-actuated brachiation

robot that imitates the movement of an ape swinging from branch

to branch. This new type of robot effectively used the gravity

for swinging, instead of just compensate for it to reduce its in-

¤uence. In the sequel a simpler two-link brachiation robot was

proposed in [2], where a control system using CMAC (Cerebel-

lar Model Arithmetic Computer) was proposed, considering a

heuristic creation of input driving forces in a previous training.

Moreover, that two-link robot was designed as an underactuated

system, i. e., the robot has two degree of freedom and only one

control input, so it can move only dynamically. The control of

underactuated mechanical systems is a research topic that dur-

ing the past years has been in vogue in the literature, for exam-

ple, [3], [4], [5].

Another important work is [6], where an error learning

method of the £nal-state control is applied to an underactuated

robot. That paper considered a linearized state-space formula-

tion with time-varying parameters. In [7], biomechanics argu-

ments are considered, leading to three distinct brachiation move-

ments, depending on the goal of the task. Those papers used a

control strategy to track some reference trajectory that mimics

a reference dynamical system. A fuzzy controller approach was

presented in [8]. A more detailed analysis considering an under-

actuated brachiation robot is presented in [9].

In this paper we apply the MPC scheme to an underactuated

brachiation robot, with three-links: two arms and a body. The

MPC scheme is adopted because it can deal with constraints and

system limits directly during the control computation [10] and

generates an implicit optimal control law. Accordingly with the

idea of take advantage of gravity forces to move the robot, it can

be supposed that the optimal control would be one that makes
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Figure 1: Three-link brachiation robot.

effective use of such forces. Hence, the MPC would generate a

control that exploit the gravity forces.

It is known that nonlinear model predictive control (NMPC)

is well developed, but the main drawback of this technique is

that the computational effort necessary is much higher than the

linear version. The NMPC deals with on-line nonlinear opti-

mization, which is a nonconvex problem, with a large number of

decision variables and a global minimum is in general impossi-

ble to £nd [11]. The strategy proposed in this work consists in

using successive linearization approach, yielding a linear, time-

varying description of the system to be solved by linear MPC.

This paper is organized as follows. In section 2 is developed

the nonlinear dynamic model of the brachiation robot. In sec-

tion 3 the model-based predictive control scheme is presented. In

the sequel (section 4) some results of simulation are presented.

Discussion concerning the results and the control scheme used

and some conclusions are given in section 5.

2 Underactuated Brachiation Robot Dynamics

The 3-link underactuated brachiation robot considered in this

work is shown in £gure 1. This robot has two arms and one link

acting like a body where payload can be located. Each arm has

a gripper that can attach £rmly to the supporting line, allowing

the robot to execute its movement in a way similar to a manipu-

lator robot. It moves by releasing one arm from the supporting

line and grasping it again in a forward point. It is important to

keep in mind that although the robot has three joints, only one of

them (joint 2) is actuated.
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2.1 Nonlinear Dynamic Model

The coordinate systems attached to the robot (see £gure 1) are

determined according to the Denavit-Hartenberg convention. By

considering this brachiation robot as a serial open-chain robotic

manipulator, its dynamics can be generally given by [12]:

D(θ)θ̈(t) + H(θ, θ̇) + G(θ) = τ − Fv (1)

Particularly for our brachiation robot, D(θ) is an 3 × 3 sym-

metric matrix representing the inertia, whose elements are:
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2

3
+
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2

3
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+
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H(θ, θ̇) is a nonlinear Coriolis and centrifugal force vector

whose elements are:

h1 = −
m2l

2 sin(θ2)θ̇2

2

2
− m2l

2 sin(θ2)θ̇1θ̇2 +

−
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G(θ) is the gravity loading force vector whose elements are:

g1 =
m1gl cos(θ1)

2
+

m2gl cos(θ1 + θ2)

2
+

+ m2gl cos(θ1) +
m3gl cos(θ1 + θ3)

2
+ m3gl cos(θ1)
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m2gl cos(θ1 + θ2)

2

g3 =
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τ is the torque on joints and Fv is the diagonal matrix with vis-

cous friction coef£cients.

Since the system is underactuated it is convenient to de£ne u

such that τ = Pu with P = [0 1 0]T . Then, the dynamics of the

robot given by (1) can be rewritten in a more suitable state space

form:

ẋ = f(x, u) (2)

where x = [θ θ̇]T is the state vector, u is the system input and

f(x, u) =

[

θ̇

D(θ)−1(uP − Fv − H(θ, θ̇) − G(θ))

]

(3)

2.2 Linearized Dynamic Model

The linearized model around the point (xr, ur) is obtained by

expanding the right side of (2) in Taylor series and neglecting

the high order terms, resulting in:

ẋ = f(xr, ur) +
∂f(x, u)

∂x

∣

∣

∣

∣ x=xr

u=ur

(x − xr)

+
∂f(x, u)

∂u

∣

∣

∣

∣ x=xr

u=ur

(u − ur) (4)

By subtracting ẋr = f(xr, ur) from (4) we can write the lin-

ear model
˙̃x = fxx̃ + fuũ (5)

where fx and fu are the jacobians of f(·, ·) with respect to x and

u, respectively, evaluated around the point (xr, ur), x̃ , x − xr

and ũ , u − ur.

The approximation of ẋ by using forward differences gives

the following discrete-time system model:

x̃(k + 1) = A(k)x̃(k) + B(k)ũ(k) (6)

with

A(k) = Tfx(kT ) + I and B(k) = Tfu(kT ) (7)

and where T is the sampling period and k is the sampling inter-

val.

3 MPC Control Scheme

Model predictive control is an optimal control strategy that

uses the model of the system to obtain an optimal control se-

quence by minimizing an objective function. At each sampling

interval, the model is used to predict the behavior of the system

over a prediction horizon. Based on these predictions, an objec-

tive function is minimized with respect to the future sequence of

inputs, thus requiring the solution of a constrained optimization

problem for each sampling interval.

Although prediction and optimization are performed over a

future horizon, only the values of the inputs for the current sam-

pling interval are used and the same procedure is repeated at the

next sampling time. This mechanism is known as moving or

receding horizon strategy, in reference to the way in which the

time window shifts forward from one sampling time to the next

one.
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3.1 MPC Problem Formulation

The basic elements present in all model-based predictive con-

troller are: prediction model, objective function, calculation of

the control action. The prediction model is the central part of the

MPC, because it is important to predict the future outputs of the

system. In this scheme, the state space model is used as predic-

tion model, but in different MPC schemes, other models could

be used [10]. The objective function de£nes the criteria to be

optimized in order to force the generation of a control sequence

that drives the system as desired.

Consider a general discrete nonlinear model, expressed as:

x(k + 1) = f(x(k), u(k)) (8)

where x(k) is the state vector and u(k) is the control input vec-

tor.

The objective function to be minimized assumes, in general,

the following form:

Φ(k) =

N2
∑

j=N1

xT (k + j|k)Qx(k + j|k)

+

Nu
∑

j=1

uT (k + j − 1|k)Ru(k + j − 1|k) (9)

where N = N2−N1 is the prediction horizon, Nu is the control

horizon and Q ≥ 0 and R ≥ 0 are weighting matrices that

penalize the state error and the control effort, respectively.

By considering the fact that every real system is in practice

subject to some constraint (for example physical limits), we de-

£ne the following general constraint expressions:

x(k + j|k) ∈ X , j ∈ [N1, N2]

u(k + j|k) ∈ U , j ∈ [0, Nu]

(10)

where X is the closed and convex set of all possible values for

x and U is the closed and convex set for all possible values for

u. By supposing that such constraints are linear with respect to

x and u, we can write:

Cx(k + j|k) ≤ c, j ∈ [N1, N2] (11)

Du(k + j|k) ≤ d, j ∈ [0, Nu] (12)

Thus, the optimization problem, to be solved at each sample

time k, is to £nd a control sequence u∗ and a state sequence x∗

such that minimize the objective function Φ(k) under imposed

constraints, that is:

u∗, x∗ = arg min
u,x

{Φ(k)} (13)

subjected to:

x(k|k) = x0 (14)

x(k + j|k) = f(x(k + j − 1|k), u(k + j − 1|k)),

j ∈ [N1, N2] (15)

Cx(k + j|k) ≤ c, j ∈ [N1, N2] (16)

Du(k + j|k) ≤ d, j ∈ [0, Nu] (17)

where x0 is the value of x in instant k.

The problem of minimizing (13) is solved for each sampling

time, resulting in the optimal control sequence:

u∗ = {u∗(k|k), u∗(k + 1|k), . . . , u∗(k + Nu|k)} (18)

and the optimal state sequence is given by:

x∗ = {x∗(k + N1|k), x∗(k + N1 + 1|k), . . . , x∗(k + N2|k)}
(19)

with an optimal cost Φ∗(k). Thus, the control law de£ned by

MPC is implicitly given by the £rst term of the optimal control

sequence:

h(δ) = u∗(k|k) (20)

where h(δ) is continuous during the sampling interval T .

3.2 Brachiation Robot Control Using LMPC

The objective function takes into account the cartesian posi-

tion of the end-effector of the robot, instead of considering di-

rectly the joint coordinates, because the robot must reach the

supporting line (y = 0), independently of the joint con£gura-

tion. It is important to highlight the fact the robot is not fully

actuated. Thus, the objective function is given by:

Φ(t) =

N2
∑

j=N1

XT (k + j|k)QX(k + j|k)

+

Nu
∑

j=1

uT (k + j − 1|k)Ru(k + j − 1|k) (21)

where X = [x y]T is the cartesian coordinates vector, Q is a

2 × 2 matrix and R is a real scalar.

The MPC deals with the system constraints as described

by (11) and (12). Besides the fact that the system is underac-

tuated, the control input has upper and lower bounds expressed

by

−τmax ≤ τ ≤ τmax (22)

with τmax = 30Nm. Moreover, we have restricted the joint

angle to be within the interval:

−π ≤ θi ≤ π (23)

4 Simulation Results

The objective of this work is to investigate the use of MPC

to control an underactuated brachiation robot. The robot moves

switching the arms as a monkey does in the branch transfer mo-

tion.

We initially posed the robot with θ1 = −π, θ2 = 0 and θ3 = 0
with null velocities. In this work we simulate the robot mov-

ing from the initial position to a £xed target position, such that

the £nal position is in advance along X axis and the end effec-

tor achieves the supporting line y = 0. The prediction horizon

N = 2 is used, with a sample interval T = 0.01s. The gain

matrix Q is set:

Q =

[

5 0
0 150

]

(24)
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Figure 2: Angular position of each joint.
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Figure 3: Trajectory on XY-plan.

and R = 1.0.

Figure 2 shows the angular position of each joint of the robot

along the movement. The trajectory executed by the end effector

in the XY -plan can be viewed in £gure 3. The unique torque

applied to the system is on joint 2 and is shown in £gure 4.

5 CONCLUSIONS AND FUTURE WORKS

This work considers the application Model-based Predictive

Control (MPC) to motion control of an underactuated brachia-

tion robot with 3 links. According to the results of the previous

section, it is possible to observe that the robot is able to release

its hand from the supporting line and grasp it again in a forward

point. It is shown that the robot is able to execute various cycles

of motion, swinging and moving forward. Special attention must

be taken to consider the gravitational force to reduce the exter-

nal torque applied to the system, in order to maximize the time

of autonomy of the robot. We intend to compare the computa-

tional effort of the linear and nonlinear model predictive control.
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Figure 4: Torque applied on joint 2.

A real-time implementation is also planned and a more detailed

analysis concerning the constraints must be carried out.
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