Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Aproximações Discretas para Funções de Transferência Contínuas

Prof. Walter Fetter Lages

15 de setembro de 2011

1 Introdução

Existe um grande conhecimento acumulado e ferramentas para análise e projeto em tempo contínuo. Uma forma de aproveitar esse conhecimento é utilizar o computador para gerar sinais discretos que sejam equivalentes aos contínuos. Essa filosofia de projeto é chamado de emulação. O problema é dado H(s), obter H(z)que aproxime as características de H(s).

Existem três paradigmas de como fazer essa aproximação:

- 1. Integração numérica
- 2. Mapeamento de pólos e zeros
- 3. Equivalência de segurador

2 Integração Numérica

Existem técnicas de integração numérica bastante sofisticadas, utilizadas, por exemplo, para simular sistemas com modelos no espaço de estados, como por exemplo as técnicas de Runge-Kutta. Aqui se está interessado em técnicas simples, de passo fixo e lineares, de forma que a aproximação mantenha a característica de linearidade do sistema.

2.1 Forward Differences (Aproximação de Euler)

A derivada é aproximada por

$$\dot{y}(kT) = \frac{y(k+1) - y(k)}{T}$$
 (1)

Considerando o sistema de primeira ordem

$$\dot{y}(t) + ay(t) = au(t) \tag{2}$$

tem-se

$$sY(s) + aY(s) = aU(s)$$

e portanto

$$G(s) = \frac{Y(s)}{U(s)} = \frac{a}{s+a}$$
(3)

A aproximação discreta de (2) utilizando (1) é

$$\frac{y(k+1) - y(k)}{T} + ay(k) = au(k)$$

de onde tem-se

$$zY(z) - Y(z) + aTY(z) = aTU(z)$$

e portanto

$$G_f(z) = \frac{Y(z)}{U(z)} = \frac{aT}{z - 1 + aT}$$

$$G_f(z) = \frac{a}{\frac{z - 1}{T} + a}$$
(4)

Comparando-se (3) com (4) tem-se que para obter ${\cal G}(z)$ a partir de ${\cal G}(s),$ basta fazer a substituição de varáveis

$$s = \frac{z-1}{T}$$

2.2 Backward Differences

A derivada é aproximada por

$$\dot{y}(kT) = \frac{y(k) - y(k-1)}{T}$$
 (5)

A aproximação discreta de (2) utilizando (5) é

$$\frac{y(k) - y(k-1)}{T} + ay(k) = au(k)$$

de onde tem-se

$$Y(z) - z^{-1}Y(z) + aTY(z) = aTU(z)$$

e portanto

$$G_{b}(z) = \frac{Y(z)}{U(z)} = \frac{aT}{1 - z^{-1} - aT}$$

= $\frac{aTz}{z(1 + aT) - 1}$
= $\frac{a}{\frac{1}{T} + 1 - \frac{1}{Tz}}$
 $G_{b}(z) = \frac{a}{\frac{z-1}{Tz} + a}$ (6)

Comparando-se (3) com (6) tem-se que para obter G(z) a partir de G(s), basta fazer a substituição de varáveis

$$s = \frac{z - 1}{Tz}$$

2.3 Regra Trapezoidal (Aproximação de Tustin, Transformação Bilinear)

A aproximação é dada por

$$\frac{\dot{y}(k) + \dot{y}(k-1)}{2} = \frac{y(k) - y(k-1)}{T}$$
(7)

A versão amostrada de (2) é

$$\dot{y}(k) + ay(k) = au(k)$$

$$\dot{y}(k) = au(k) - ay(k)$$
(8)

ou atrasado no tempo

$$\dot{y}(k-1) = au(k-1) - ay(k-1)$$
(9)

Substituindo (8) e (9) em (7) resulta

$$\frac{1}{2}(au(k) - ay(k) + au(k-1) - ay(k-1)) = \frac{y(k) - y(k-1)}{T}$$

de onde tem-se

$$Y(z)\left(1-z^{-1}+\frac{aT}{2}+\frac{aT}{2}z^{-1}\right) = U(z)\left(1+z^{-1}\right)\frac{aT}{2}$$

e portanto

$$G_{t}(z) = \frac{Y(z)}{U(z)} = \frac{\frac{aT}{2}(z+1)}{\left(1+\frac{aT}{2}\right)z+\frac{aT}{2}-1}$$

$$= \frac{aT(z+1)}{(2+aT)z+aT-2}$$

$$= \frac{aT(z+1)}{2z+aTz+aT-2}$$

$$= \frac{aT(z+1)}{2(z-1)+aT(z+1)}$$

$$G_{t}(z) = \frac{a}{\frac{2}{T}\frac{(z-1)}{(z+1)}+a}$$
(10)

Comparando-se (3) com (10) tem-se que para obter G(z) a partir de G(s), basta fazer a substituição de varáveis

$$s = \frac{2}{T} \frac{z-1}{z+1}$$

Resumidamente, as aproximações por integração numérica podem ser vistas na Tab. 1.

2.4 Mapeamento do Semiplano Esquerdo do plano s no plano z

2.4.1 Forward Differences

Utilizando a transformação z = 1 + Ts, o limite de estabilidade $s = j\omega$ mapeiase em $z = 1 + jT\omega$. Ou seja, na região mostrada na Fig. 1. Portanto, sistemas

Tabela 1: Aproximações por integração numérica.

Aproximação	$s \rightarrow z$	$z \rightarrow s$
Forward differences (Euler)	$s = \frac{z-1}{T}$	z = 1 + Ts
Backward differences	$s = \frac{z-1}{Tz}$	$z = \frac{1}{1 - Ts}$
Aproximação trapezoidal (Tustin, bilinear)	$s = \frac{2}{T} \frac{z-1}{z+1}$	$z = \frac{1 + \frac{Ts}{2}}{1 - \frac{Ts}{2}}$

estáveis no plano s podem tornarem-se instáveis quando mapeados para z por esse método.

Figura 1: Mapeamento da região de estabilidade do plano *s* no plano *z* utilizando *forward differences*.

2.4.2 Backward Differences

Nesse caso, tem-se

$$z = \frac{1}{1 - Ts} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} + \frac{2 - (1 - Ts)}{2(1 - Ts)} = \frac{1}{2} + \frac{1}{2} \underbrace{\frac{Ts + 1}{1 - Ts}}_{\substack{\text{módulo}=1\\ \text{quando}\\ s = j\omega}}$$

logo $|z - \frac{1}{2}| = \frac{1}{2}$, que representa um círculo de raio $\frac{1}{2}$ centrado em $\frac{1}{2}$, como mostra a Fig. 2. Essa transformação mapeia sistemas estáveis em *s* em sistemas estáveis

em z. No entanto, nem toda a região de estabilidade no plano z é utilizada no mapeamento. Logo, é natural supor que a utilização dessa transformação restringe o espaço de projeto, tornando a solução mais difícil caso se deseje característico de desempenho específicas.

Figura 2: Mapeamento da região de estabilidade do plano *s* no plano *z*, utilizando *backward differences*.

2.4.3 Aproximação de Tustin

Tem-se

$$z = \frac{1 + \frac{Ts}{2}}{\underbrace{1 - \frac{Ts}{2}}_{\substack{\text{módulo}=1\\ \text{quando}\\ s=j\omega}}}$$

logo |z| = 1, que representa o círculo unitário, como mostra a Fig. 3. A aproximação de Tustin mapeia todo o semiplano esquerdo de *s* no interior do círculo unitário em *z*. No entanto, embora exista uma congruência das regiões de estabilidade há uma grande distorção.

Figura 3: Mapeamento da região de estabilidade do plano s no plano z, utilizando a aproximação de Tustin.

2.5 Prewarping

A distorção causada pela aproximação de Tustin, pode ser compensada para uma determinada frequência de interesse (normalmente a frequência de corte do sistema). Considere, por exemplo

$$H(s) = \frac{a}{s+a}$$

Utilizando a aproximação de Tustin, tem-se

$$H_T(z) = \frac{a}{\frac{2}{T}\frac{z-1}{z+1} + a}$$

A função de transferência H(s) possui um pólo em s=-ae a sua potência é dada por

$$|H(j\omega)|^2 = \frac{a^2}{\omega^2 + a^2} = \frac{1}{\frac{\omega^2}{a^2} + 1}$$

Portanto, em $\omega = a$ a potência é $|H(j\omega)|^2 = \frac{1}{2}$.

Agora considerando a aproximação discreta, frequências ω_1 possuem como resposta $H_T(z_1)|_{z_1=e^{j\omega_1 T}}$, ou seja

$$H_{T}(z_{1}) = \frac{a}{\frac{2}{T} \frac{e^{j\omega_{1}T} - 1}{e^{j\omega_{1}T} + 1} + a}$$
$$= \frac{a}{\frac{2}{T} \frac{e^{j\omega_{1}\frac{T}{2}} - e^{-j\omega_{1}\frac{T}{2}}}{e^{j\omega_{1}\frac{T}{2}} + e^{-j\omega_{1}\frac{T}{2}}} + a}$$
$$H_{T}(z_{1}) = \frac{a}{\frac{2}{T}j \tan\left(\frac{\omega_{1}T}{2}\right) + a}$$

e portanto a potência é

$$|H_T(z_1)|^2 = \frac{a^2}{\left(\frac{2}{T}\tan\left(\frac{\omega_1 T}{2}\right)\right)^2 + a^2}$$

Consequentemente, o ponto de corte é dado por

$$|H_T(z_1)|^2 = \frac{1}{2} \Rightarrow \frac{a^2}{\left(\frac{2}{T}\tan\left(\frac{\omega_1 T}{2}\right)\right)^2 + a^2} = \frac{1}{2}$$

ou

$$\frac{2}{T}\tan\left(\frac{\omega_1 T}{2}\right) = a \Rightarrow \tan\left(\frac{\omega_1 T}{2}\right) = \frac{aT}{2}$$

e portanto

$$\omega_1 = \frac{2}{T} \operatorname{atan} \left(\frac{aT}{2}\right)$$

Note que $\omega_1 \approx a$ se $\frac{aT}{2} \ll 1 \Rightarrow \operatorname{atan} \left(\frac{aT}{2}\right) \approx \frac{aT}{2}$. Por outro lado, $\frac{aT}{2} \ll 1 \Rightarrow \frac{a\frac{2\pi}{\omega_2}}{2} \ll 1 \Rightarrow \omega_s \gg \pi a$. Pode-se fazer um *prewarping* para garantir que a frequência de meia potência

continue sendo ω_1 . O procedimento é

- 1. Escrever H(s) na forma $H(s/\omega_1)$.
- 2. Substituir ω_1 por $a = \frac{2}{T} \tan\left(\frac{\omega_1 T}{2}\right)$ para obter H(s/a).
- 3. Substituir $s = \frac{2}{T} \frac{z-1}{z+1}$ para obter $H_p(z)$.

O procedimento pode ser resumido como:

$$H_p(z) = H(s/\omega_1)|_{s=\frac{\omega_1}{\tan(\frac{\omega_1 T}{2})}} \frac{z-1}{z+1}$$

3 Mapeamento de Pólos e Zeros

Considere o sinal descrito por

$$y(t) = e^{-\alpha t} \cos(\omega t) u(t) \tag{11}$$

cuja transforma de Laplace é

$$Y(s) = \frac{s + \alpha}{(s + \alpha)^2 + \omega^2}$$

que tem pólos em

$$s_1 = -\alpha + j\omega$$

$$s_2 = -\alpha - j\omega$$

A versão discreta de (11) é

$$y(k) = r^k \cos(\theta k) u(k)$$

com $r=e^{-\alpha T},$
 $\theta=\omega T$ e cuja transformada zé

$$Y(z) = \frac{1}{2} \left(\frac{z}{z - re^{j\theta}} + \frac{z}{z - re^{-j\theta}} \right)$$

ou

$$Y(z) = \frac{z \left(z - r \cos(\theta)\right)}{z^2 - 2r \cos(\theta)z + r^2}$$

que tem pólos em

$$z_1 = r e^{j\theta}$$
$$z_2 = r e^{-j\theta}$$

Logo,

$$z_1 = re^{j\theta} = e^{-\alpha T}e^{j\theta} = e^{(-\alpha + j\omega)T}$$
$$z_2 = re^{-j\theta} = e^{-\alpha T}e^{-j\theta} = e^{(-\alpha - j\omega)T}$$

ou

$$z_1 = e^{s_1 T}$$
$$z_2 = e^{s_2 T}$$

Se G(z) é uma razão de polinômios, pode ser expresso como uma soma de frações parciais na forma $\frac{z}{z-a}$ ou $\frac{1}{z-a}$. Assim, o sinal discreto pode ser gerado pela amostragem de um sinal contínuo cuja relação entre os pólos em s e os pólos em z é dada por

$$z = e^{sT} \tag{12}$$

e pode-se usar essa relação para mapear características entre o plano s e o plano z.

 $\begin{bmatrix} \text{Existem diversos valores de } z \text{ que satisfazem a relação (12) para um determinado valor de } s. Se \end{bmatrix}$

$$s_2 = s_1 + j\frac{2\pi}{T}n$$

então

$$e^{s_1T} = e^{s_2T}$$

Ou seja ocorre um fenômeno de *aliasing*.

É comum extrapolar-se este mapeamento também para os zeros, mas esta é uma regra heurística, sem comprovação formal.

Assim, o procedimento para obter uma aproximação discreta para uma função de transferência contínua H(s) utilizando mapeamento de pólos é:

- 1. Todos os pólos de H(s) são mapeados por $z = e^{sT}$. Ou seja, se H(s) tem pólo em s = -a, H(z) tem um pólo em $z = e^{-aT}$.
- 2. Todos os zeros finitos de H(s) também são mapeados por $z = e^{sT}$.
- 3. O zeros de H(s) em $s \to \infty$ são mapeados em H(z) no ponto z = -1.

[Mapear zeros no infinito em z = -1 equivale a mapea-los na maior frequência possível, que no caso digital é $e^{j\pi}$ =-1.

Opcionalmente um dos zeros de H(s) em $s \to \infty$ é mapeado em $z \to \infty$. Ou seja H(z) possui um pólo a mais do que zeros no plano finito. Com isso, a resposta não terá termo constante, logo h(k) terá um atraso de um período, o que deixa o computador com tempo para calcular o sinal. 4. O ganho é ajustado para ser igual ao ganho de H(s) no centro da banda de passagem ou em outra frequência de interesse. No caso de sistemas de controle a frequência crítica é s = 0, que é equivalente ao ganho DC do sistema e que corresponde à resposta em regime permanente.

$$H(s)|_{s=0} = H(z)|_{z=1} \Rightarrow z = e^{sT}|_{s=0} = 1$$

Exemplo 1

$$H(s) = \frac{a}{s+a}$$
$$H(z) = \underbrace{\frac{\overbrace{zero\ em}}_{s\to\infty}}_{\substack{zero\ em}} \underbrace{\frac{ajuste}{de\ ganho}}_{\substack{zero\ em}} \underbrace{\frac{1-e^{-aT}}{2}}_{\substack{polo\ em}}$$

ou mapeando um dos zeros no infinito:

$$H(z) = \frac{1 - e^{-aT}}{z - e^{-aT}}$$

4 Equivalência de Seguradores

Considere o sistema contínuo mostrado na Fig. 4(a), descrito por H(s) e cuja entrada é u(t) e a saída é y(t). Deseja-se obter a função de transferência discreta $H_h(z)$, tal que quando submetida à amostras de u(t) gera uma aproximação de y(t), tal como mostrado na Fig. 4.

O equivalente discreto é obtido aproximando u(t) a partir das amostras $u^*(kT)$, de forma a obter $\hat{u}(t)$ que é aplicado a H(s). Existem diversas formas de fazer essa aproximação.

4.1 Segurador de Ordem Zero

Quanto é utilizado um segurador de ordem zero para obter $\hat{u}(t)$, a partir de $u^*(kT)$, tem-se a situação mostrada na Fig. 5. Essa situação é semelhante à modelagem de um sistema amostrado. Portanto, tem-se

$$H_{h0}(z) = \left(1 - z^{-1}\right) \mathcal{Z}\left\{\frac{H(s)}{s}\right\}$$

Figura 4: Construção de um segurador equivalente.

Figura 5: Sinal u(t), suas amostras e aproximação por segurador de ordem zero.

4.2 Segurador de Triangular

Pode-se imaginar um segurador com a resposta impulsiva mostrada na Fig. 6. A ideia desse segurador é interpolar as amostras através de segmentos de retas, ao invés de manter constante o valor da última amostra, como mostra a Fig 7.

$$T_{H}(s) = \mathcal{L}\left\{\left(1+\frac{t}{T}\right)\left(u_{0}(t+T)-u_{0}(t)\right)+\left(1-\frac{t}{T}\right)\left(u_{0}(t)-u_{0}(t-T)\right)\right\}$$

$$= \mathcal{L}\left\{u_{0}(t+T)-u_{0}(t)+\frac{t}{T}u_{0}(t+T)-\frac{t}{T}u_{0}(t)+u_{0}(t)-u_{0}(t-T)\right\}$$

$$-\frac{t}{T}u_{0}(t)+\frac{t}{T}u_{0}(t-T)\right\}$$

$$T_{H}(s) = \mathcal{L}\left\{u_{0}(t+T)+\frac{t}{T}u_{0}(t+T)-\frac{t}{T}u_{0}(t)-u_{0}(t-T)-\frac{t}{T}u_{0}(t)+\frac{t}{T}u_{0}(t-T)\right\}$$

Figura 6: Resposta impulsiva de um segurador triangular.

Figura 7: Sinal $\boldsymbol{u}(t),$ suas amostras e aproximação por segurador triangular.

$$\mathcal{L}\left\{\frac{t}{T}u_0(t+T)\right\} = e^{sT}\mathcal{L}\left\{\frac{\tau-T}{T}u_0(\tau)\right\}$$
$$= e^{sT}\mathcal{L}\left\{\frac{\tau}{T}u_0(\tau) - u_0(\tau)\right\}$$
$$= e^{sT}\left(\frac{1}{s^2T} - \frac{1}{T}\right)$$
$$\mathcal{L}\left\{\frac{t}{T}u_0(t+T)\right\} = \frac{e^{sT}}{s^2T} - \frac{e^{sT}}{T}$$

Por similaridade:

$$\mathcal{L}\left\{\frac{t}{T}u_0(t-T)\right\} = \frac{e^{-sT}}{s^2T} + \frac{e^{-sT}}{T}$$

Portanto:

$$T_H(s) = \frac{e^{sT}}{s} + \frac{e^{sT}}{s^2T} - \frac{e^{sT}}{s} - \frac{1}{s^2T} - \frac{e^{-sT}}{s} - \frac{1}{s^2T} + \frac{e^{-sT}}{s^2T} + \frac{e^{-sT}}{s^2T}$$
$$T_H(s) = \frac{e^{sT} - 2 + e^{-sT}}{s^2T}$$

Assim,

$$\begin{aligned} H_t(z) &= \mathcal{Z} \left\{ \mathcal{L}^{-1} \left\{ T_H(s) H(s) \right\} \right\} = \mathcal{Z} \left\{ \mathcal{L}^{-1} \left\{ \frac{e^{sT} - 2 + e^{-sT}}{T} \frac{H(s)}{s^2} \right\} \right\} \\ &= \frac{z - 2 + z^{-1}}{T} \mathcal{Z} \left\{ \frac{H(s)}{s^2} \right\} \\ &= \frac{z^2 - 2z + 1}{Tz} \mathcal{Z} \left\{ \frac{H(s)}{s^2} \right\} \\ H_t(z) &= \frac{(z - 1)^2}{Tz} \mathcal{Z} \left\{ \frac{H(s)}{s^2} \right\} \end{aligned}$$

Em geral, não faz muito sentido utilizar-se um segurador desse tipo em um A/D, mas pode ser útil em um D/A.