Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Digitalização de Controladores Contínuos

Prof. Walter Fetter Lages

18 de outubro de 2011

1 Introdução

Nessa metodologia de projeto projeta-se um controlador contínuo, e converte-se para um controlador discreto utilizando uma transformação de s para z.

Em geral, obtém-se bons controladores se a frequência de amostragem é maior do que 30 vezes a largura de banda do sistema. Se a frequência de amostragem é menor do que 6 vezes a largura de banda do sistema, o controlador precisa, tipicamente, ser melhorado.

Muitas vezes, faz-se um projeto contínuo mesmo que se vá fazer um projeto totalmente digital, para servir de comparação.

2 Projeto Contínuo

Considere um sistema de controle da elevação de uma antena para rastrear um satélite com momento de inércia J e coeficiente de atrito viscoso B, tal que J/B = 10, mostrado na Fig. 1. Deseja-se obter um *overshoot* $\leq 16\%$, erro à rampa de 0,01rd/s < 0,01rd e tempo de acomodação a $1\% \leq 10s$.

Figura 1: Sistema de controle da elevação de uma antena.

$$\begin{aligned} \tau &= J\ddot{\theta} + B\dot{\theta} \\ T(s) &= Js^2\Theta(s) + Bs\Theta(s) \\ \frac{\Theta(s)}{T(s)} &= \frac{1}{Js^2 + Bs} = \frac{1/B}{s\left(\frac{Js}{B} + 1\right)} \\ U(s) &\triangleq \frac{T(s)}{B} \\ \frac{\Theta(s)}{U(s)} &= \frac{1}{s(10s+1)} \\ \frac{\Theta(s)}{U(s)} &= \frac{0,1}{s(s+0,1)} \end{aligned}$$

$$Overshoot < 16\% \Rightarrow \xi > -\frac{\frac{\ln M_p}{\pi}}{\sqrt{1 + \left(\frac{\ln M_p}{\pi}\right)^2}}$$
$$\xi > -\frac{\frac{\ln 0.16}{\pi}}{\sqrt{1 + \left(\frac{\ln 0.16}{\pi}\right)^2}}$$
$$\xi > 0,5$$

$$\begin{array}{rcl} t_s &\leq& 10s \Rightarrow t_s = \frac{4,6}{\xi\omega_n} \\ \omega_n &\approx& 1rd/s \\ \omega_d &=& \omega_n \sqrt{1-\xi^2} = 0,866rd/s \\ \sigma &=& \xi\omega_n = 0,5rd/s \end{array}$$

A Fig. 2 mostra os polos desejados.

Figura 2: Posição dos polos desejados.

A Fig. 3 mostra um diagrama de blocos do sistema, supondo que as especificações podem ser obtidas utilizando-se apenas um ganho K.

Figura 3: Diagrama de blocos com ganho K.

A equação característica do sistema é dada por

$$1 + K \frac{0, 1}{s(s+0, 1)} = 0$$

$$s^{2} + 0, 1s + 0, 1K = 0$$

que possui duas raízes, portanto o lugar das raízes possui dois ramos.

Os ângulos das assíntotas do lugar das raízes é dado por

ângulo das assíntotas = $\frac{\pm 180^{\circ}(2k+1)}{n-m} = \frac{\pm 180^{\circ}(2k+1)}{2-0} = \pm 90^{\circ}(2k+1)$

onde n é o número de polos finitos de G(z)H(z) e m é o número de zeros finitos de G(z)H(z).

E a intersecção das assíntotas ocorre em

$$\sigma_a = \frac{(p_1 + p_2 + \dots + p_n) - (z_1 + z_2 + \dots + z_m)}{n - m} = \frac{0 - 0, 1}{2 - 0} = -0,05$$

Os pontos de partida e chegada em relação ao eixo real são dados por $\frac{dK}{ds} = 0$:

$$K = -\frac{s^2 + 0, 1s}{0, 1}$$
$$\frac{dK}{ds} = -\frac{2s + 0, 1}{0, 1}$$
$$\frac{dK}{ds} = 0 \Rightarrow s = -\frac{0, 1}{2}$$
$$s = -0.05$$

Os ângulos de partida e chegada dos polos e zeros complexos seriam dados por ângulo de partida $= 180^{\circ} - ($ ângulos dos polos - ângulos dos zeros). No entanto, nesse caso, não se tem polos ou zeros complexos.

A Fig. 4 mostra o lugar das raízes para o sistema sem qualquer compensador. Percebe-se que apenas ajustando o ganho K não será possível posicionar os polos no lugar desejado.

Nota-se que a posição dos polos pode ser livremente escolhida desde que $\xi\omega_n = 0,05$, que é o centro dos dois polos. Se o polo de malha aberta que está em s = -0, 1 estivesse em s = 1 os polos poderiam ser livremente alocados sobre o eixo s = 0, 5.

Como se pode, a princípio, escolher livremente o controlador, se pode fazer

$$C(s) = \underbrace{\frac{\underset{\text{ganho}}{\text{ganho}} \sum_{\substack{\text{os polss de} \\ \text{malha fechada}}}_{(s+0,1)} \underbrace{\frac{(s+0,1)}{(s+0,1)}}_{\substack{\text{coloca} \\ \text{o polo de} \\ \text{malha aberta} \\ \text{no lugar} \\ \text{desejado}}}^{\text{cancela}}$$

Figura 4: Lugar das raízes para o sistema não compensado.

de forma a ter-se o diagrama de lugar das raízes mostrado na Fig. 5. E o ganho K pode ser ajustado para posicionar os polos no lugar desejado:

$$K = \frac{\prod \text{distância dos polos}}{\prod \text{distância dos zeros}}$$

$$K = \sqrt{0,866^2 + 0,5^2} \sqrt{0,866^2 + 0,5^2}$$

$$K = 1$$

e portanto

$$C(s) = \frac{10(s+0,1)}{s+1} = \frac{10s+1}{s+1}$$

O sistema em malha fechada é mostrado na Fig. 6. O coeficiente de erro estático de velocidade é dado por

$$K_v = \lim_{s \to 0} sC(s)G(s)$$
$$= \lim_{s \to 0} s \frac{1(10s+1)}{s(s+1)(10s+1)}$$
$$K_v = 1$$

e o erro à rampa unitária é dado por

$$e_{ssv} = \frac{1}{K_v} = 1$$

Assim, o erro à rampa de 0,01 rad/s é de 0,01 rad. Portanto o projeto contínuo atende às especificações.

Figura 5: Lugar das raízes para o sistema compensado.

Nunca se deve cancelar polos ou zero no semiplano direito.

O que acontece se o cancelamento de polos e zeros não for perfeito, ou seja, se $C(s) = \frac{10K(s+0,11)}{s+1}$?

3 Digitalização do Controlador

Γ

Para obtenção do controlador discreto será utilizado mapeamento de polos e zeros. Para tanto, precisa-se escolher o período de amostragem. Tem-se

$$\omega_n = 1rad/s \Rightarrow f_n = 0, 16Hz \Rightarrow T_n = 6.28s$$

Nesse caso, como em malha fechada tem-se dois polos complexos, que possuem o mesmo valor de ω_n , a largura de banda do sistema é aproximadamente

Figura 6: Diagrama de blocos com compensador.

igual a f_n . Assim, a frequência de amostragem é

$$f_s > 40 f_n = 4.8 Hz \Rightarrow f_s = 5 Hz \Rightarrow T_s = 0, 2s$$

Assim, os polos e zeros de C(s) são mapeados para o plano z por

$$s_1 = -0, 1 \Rightarrow z_1 = e^{s_1 T_s} = e^{-0,1 \times 0,2} = e^{-0,02} = 0,9802$$

$$s_2 = -1 \Rightarrow z_2 = e^{s_2 T_s} = e^{-1 \times 0,2} = e^{-0,2} = 0,8187$$

de modo que

$$C(z) = \frac{K(z-0,9802)}{z-0,8187}$$

com o valor de K determinado por

$$\lim_{z \to 1} C(z) = \lim_{s \to 0} C(s)$$
$$\lim_{z \to 1} \frac{K(z - 0, 9802)}{z - 0, 8187} = \lim_{s \to 0} \frac{10s + 1}{s + 1} = 1$$
$$\frac{K(1 - 0, 9802)}{1 - 0, 8187} = 1$$
$$K = \frac{1 - 0, 8187}{1 - 0, 9802}$$
$$K = 9, 16$$

Logo,

$$C(z) = \frac{9,16(z-0,9802)}{z-0,8187} = \frac{U(z)}{E(z)}$$

de onde pode obter-se a equação a diferenças:

instante de amostragem

Assim, o loop de controle consiste em

- 1. ler o A/D=y(k)
- 2. calcular e(k) = r(k) y(k)
- 3. calcular u(k) = u'(k) + 9,16e(k)
- 4. escrever no D/A=u(k)
- 5. atualizar u'(k)
- 6. esperar o próximo instante de amostragem

Idealmente, o tempo entre os passos 1 e 4 deveria ser zero. Se esse tempo não puder ser desprezado, deve-se incluir o atraso no modelo. Note que no passo 6 esperar o próximo instante de amostragem é diferente de executar um *delay* de T_s segundos, justamente devido ao tempo de processamento exigido nos passos anteriores.

O projeto do controlador que, a princípio atende as especificações está pronto. Tem-se três alternativas:

- 1. Implementar e verificar o desempenho.
- 2. Fazer uma análise no plano z para verificar se foi alterado o desempenho durante a digitalização do controlador contínuo.
- 3. Simular o sistema em um computador e verificar o desempenho.

4 Análise no plano z

Para analisar o efeito da digitalização sobre o desempenho do sistema precisa-se da transformada z do modelo contínuo da planta precedida por um amostrador de ordem zero:

$$G(z) = \frac{z-1}{z} \mathcal{Z} \left\{ \frac{1}{s} \frac{0,1}{s(s+0,1)} \right\}$$
$$G(z) = \frac{z-1}{z} \mathcal{Z} \left\{ \frac{A}{s^2} + \frac{B}{s} + \frac{C}{s+0,1} \right\}$$

$$A = \lim_{s \to 0} s^2 \frac{0, 1}{s^2(s+0,1)} = 1$$

$$B = \lim_{s \to 0} \frac{d}{ds} s^2 \frac{0, 1}{s^2(s+0,1)}$$

$$= \lim_{s \to 0} \frac{d}{ds} \frac{0, 1}{s+0, 1}$$

$$= \lim_{s \to 0} -\frac{0, 1}{(s+0,1)^2} = -\frac{0, 1}{0, 1^2} = -10$$

$$C = \lim_{s \to -0, 1} (s+0, 1) \frac{0, 1}{s^2(s+0, 1)} = \frac{0, 1}{(-0, 1)^2} = 10$$

$$\begin{split} G(z) &= \frac{z-1}{z} \mathcal{Z} \left\{ KT - 10 + 10e^{-0.1KT} \right\} \\ &= \frac{z-1}{z} \left(\frac{Tz}{(z-1)^2} - 10 \frac{z}{z-1} + 10 \frac{z}{z-e^{-0.1T}} \right) \\ &= \frac{T}{(z-1)} - 10 + 10 \frac{z-1}{z-e^{-0.1T}} \\ &= \frac{T \left(z - e^{-0.1T} \right) - 10(z-1) \left(z - e^{-0.1T} \right) + 10(z-1)^2}{(z-1) \left(z - e^{-0.1T} \right)} \\ &= \frac{Tz - Te^{-0.1T} - 10z^2 + 10ze^{-0.1T} + 10z - 10e^{-0.1T} + 10z^2 - 20z + 10}{(z-1) \left(z - e^{-0.1T} \right)} \\ &= \frac{\left(T + 10e^{-0.1T} - 10 \right) z - Te^{-0.1T} - 10e^{-0.1T} + 10}{(z-1) \left(z - e^{-0.1T} \right)} \\ &= \frac{0,001987z - 0,001974}{(z-1)(z-0,9802)} \\ G(z) &= 0,001987 \frac{z - 0,9934}{(z-1)(z-0,9802)} \end{split}$$

Raízes no plano z são obtidas resolvendo-se a equação característica:

$$1 + C(z)G(z) = 0$$

$$1 + \frac{9,16(z-0,9802)}{z-0,8187}0,001987\frac{z-0,9934}{(z-1)(z-0,9802)} = 0$$
$$z = 0,9003 \pm j0,1623$$
$$z = e^{sT} \Rightarrow s = \frac{1}{T}\ln z$$
$$s = -0,4452 \pm j0,8918$$

A Fig. 7 mostra dos polos resultantes.

$$\omega_n = \sqrt{0.8918^2 + 0,4452^2} = 0,9967$$

$$\begin{split} \omega_n \xi &= \sigma \\ 0,9968\xi &= 0,4452 \\ \xi &= 0,4471 \text{ (desejava-se } \xi \geq 0.5) \end{split}$$

$$t_s = \frac{4.6}{\xi\omega_n} = \frac{4,6}{0,4452} = 10,33s$$
 (desejava-se 10s)

overshoot = $e^{-\frac{\xi}{\sqrt{1-\xi^2}}\pi}$ = 20,8% (desejava-se 16%) Se, por outro lado, tivesse sido escolhido $T_s = 1s < \frac{T_n}{6}$:

$$C(s) = 10\frac{s+0,1}{s+1}$$

$$s_1 = -0, 1 \Rightarrow z_1 = e^{s_1 T_s} = e^{-0,1} = 0,9048$$

$$s_2 = -1 \Rightarrow z_2 = e^{s_2 T_s} = e^{-1} = 0,3679$$

O ganho seria:

$$\frac{K(1-0,9048)}{1-0,3679} = 1$$

$$K = \frac{1-0,3679}{1-0,9048}$$

$$K = 6,64$$

Logo,

$$C(z) = 6,64 \frac{(z-0,9048)}{z-0,3679}$$

$$G(z) = \frac{\left(T + 10e^{-0.1T} - 10\right)z - Te^{-0.1T} - 10e^{-0.1T} + 10}{(z - 1)(z - e^{-0.1T})}$$

= $\frac{0.0484z - 0.0468}{(z - 1)(z - 0.9048)}$
$$G(z) = 0.0484 \frac{z - 0.9672}{(z - 1)(z - 0.9048)}$$

Raízes no plano z são obtidas resolvendo-se a equação característica:

1 + C(z)G(z) = 0

$$1 + 6, 64 \frac{(z - 0, 9048)}{z - 0, 3679} 0, 0484 \frac{z - 9672}{(z - 1)(z - 0, 9048)} = 0$$
$$z = 0, 5388 \pm j0, 5987$$
$$z = e^{sT} \Rightarrow s = \frac{1}{T} \ln z$$
$$s = -0, 2164 \pm j - 0, 838$$
$$\omega_n = \sqrt{0.2164^2 + 0, 838^2} = 0, 8655$$

$$\omega_n \xi = \sigma$$

$$\xi = \frac{0,2164}{0,8655} = 0,25 \text{ (desejava-se } \xi \ge 0.5)$$

$$t_s = \frac{4.6}{\xi \omega_n} = \frac{4,6}{0,2164} = 21,26s \text{ (desejava-se } 10s)$$

overshoot = $e^{-\frac{\xi}{\sqrt{1-\xi^2}}\pi} = 44\%$ (desejava-se 16%)

Obviamente, o desempenho do sistema foi degradado. A explicação para essa degradação é que embora C(z) gere os mesmos valores (aproximadamente) que C(s), a reconstrução de u(t) pelo segurador de ordem zero é apenas uma aproximação para o u(t) contínuo assumindo no projeto de C(s). A aproximação através de um segurador de ordem zero gera uma versão de u(t) atrasada de $\frac{T}{2}$. Esse atraso de fase pode comprometer a estabilidade do sistema. Uma alternativa seria considerar o atraso no projeto de C(s), fazendo com que um avanço de fase fosse incluído em C(s). Assim, a discretização atrasaria o resultado para o valor desejado.

É importante notar que os cálculo dever ser feitos com um bom número de algarismos significativos, para que a perda de precisão não afete os resultados.