Robocontrol

AVA

5" WORKSHOP IN A
APPLIED ROBOTICS u n es p v
AND AUTOMATION

INTEGRATING THE OROCOSFRAMEWORK AND THE BARRETT WAM ROBOT

Darlan loris', Walter Fetter Lages', Diego Caberlon Santini!

'UFRGS, Porto Alegre, Brazil, darlanioris@ece.ufrgs.br, fetter@érgs.br, diegos@ece.ufrgs.br

Abstract: This paper deals with the development of an interimplementing complex systems. Nonetheless, that does not
face between the OROCOS framework and the Barret WAMavor the software reuse, as that software is specific for a
robot. The interface is designed as an OROCOS componertardware, operating system or communication media. Fur-
which integrates the Barrett WAM with a previously devel-thermore, all the functionality and knowledge is hard-abde

oped open architecture for robot control. in the program and not exposed in a clear and consistent in-
Keywords: OROCOS, Control architecture, Open architec-terface'
ture This paper proposes to integrate the Barrett WAM manipu-

lator robot [3] to the OROCOS framework [4], thus enabling
the use of the robot through components built for this frame-
work and the integration of the robot in an open control archi

The need for high performance robots imposes a growim:(:;eCture proposed in [1].

complexity in hardware, software and control architegure The state of the art in the development of robotics soft-
The reuse of existing knowledge and functional blocks makeware and the main frameworks are presented in section 2.,
the task of designing a new robot system easier, faster aralong with some concepts of CBSE. In section 3., the ORO-
more reliable. However, such a reuse is not yet the main€OS framework is discussed in more detail, while the section
stream in the robot industry. Usually, commercial robots ar 4. introduces the hardware and software of the Barrett WAM
based on proprietary architectures, which precludes i&s in robot, discussing its functionalities and its proprietioyary.
gration in more complex systems or even the software reusel he architecture proposed in [5] and its use with the most re-

(fent version of the OROCOS framework are detailed in sec-

In order t'o overcome such problems, new dev'elopment n 5.. The interfacing of thei bbarrett library with the
methodologies are necessary. Those methodologies sho OCOS framework, through a component is presented in

enable the integration of technologies and knowledge of all’_ _~ . . .) .
. . . . section 6., while its use in an open architecture is deah wit
designers involved in such projects.

in section 7., where the implementation of two types of con-
In an open architecture, all the details of the robot are doctrollers are presented. Finally, conclusions and futurele

umented and the software and hardware structures are sucphment directions are presented in section 8..

that new sensors, controllers and interfaces can be addled. A

aspects of the robot design can be easily modified [1]. Therez- COMPONENT-BASED ROBOTICS

fore, by using open architectures, one intents to creaigmes

standards that makes the system integration and hardware an

software reuse easier.

1. INTRODUCTION

The application of CBSE concepts to robotics enables
the development and handling of complex robotics systems
Open architectures can be used with many systems anlrough the use of previously developed components [6],
should have an implementation abstracting the hardware arnyielding the following benefits:
basic software, to avoid dependence on any specific producer

Hence, it should be independent of the supporting platform. Complexity management: even the simpler robotic systems

A methodology that provides the tools for the de- are complex due to existence of many elements such as
velopment open architectures with such characteristics is actuators, sensors and controllers that interact with each
the Component-Based Software Engineering (CBSE). That other. Most of them require a proper execution thread
methodology uses the concept of component to develop soft- synchronously or asynchronously communicating with
ware autonomous units, each one able to abstract some hard- other threads. A method to standardize the communica-

ware part or functionality and exposing an standard interfa tion and delimit each element according to its tasks and
to the remaining system. That modularity, enabled by com- characteristics is necessary to manage the system com-
ponents, is the base for an open architecture. plexity.

However, the development of component based softwarg,e,ipijity: for the development of complex projects, it is

an C(cj)de reuse is not yert1 a cgmmfon prac(;jtlcelm robotics, ey important to be able to develop, change and test spe-
bowac‘j ays, most reiearc anh_ SO twareb givef opment arhe cific modules without side-effects in the whole system.
ased on custom software architectures, bullt from scratc The flexibility of a component based system enables to

[2_]_' Hence, most_ robot applications are developed for a spe- focus on a particular task, retaining the functionality of
cific purpose, which accumulates a huge amount of software the remaining system

Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan loris, Walter Fetter Lages, Diego Caberlon Santini

Distributed environments: distributed robotic systems are Those frameworks are compared in Table 1 [7], which
widely used, typically where mobile robots are con-shows the level of support for the Windows, Linux, RTOS
trolled by a remote station. The modularity of a com-(Real-Time Operating System), MT (Multi-Thread), MP
ponent based system makes it simpler to communicat@Multi-Process) e MH (Multi-Host) platforms for each frame
with a swarm of robots. work. Regarding the RTOS support, it is important to note

] . . that what is considered here is the support for hard read-tim
Variety of hardware and operating systems: robotic sys- execution and not just the possibility to execute the frame-
tems are implemented in a variety of hardware platformsyork in a RTOS.

and operating systems. The modularization achieved
through components enables decoupling the application
implementation from the underlying hardware and op-
erating systems. Hence, it becomes possible to build

Table 1: Common frameworksused in robotics.
Framework Windows Linux RTOS MT MP MH

generic applications, without dependencies on those fac- P 1ayer partial yes no no yes yes
tors, that would be useful in many situations. OROCOS yes yes yes yes yes yes
Orca partial yes partial no yes yes

Those properties enables the development of new applica- ROS partial yes partial no yes yes

tions based on existing and reliable components, thus ensur

. CISS es es es es yes yes
ing more robustness to the new system. y y y yes yes y

Many architectures, frameworks and components have The OROCOS framework will be used here as it provides
been proposed and developed to help on the process of builgore functionalities and has a scope broader than CISST,
ing robotic control systems. Although most systems adopt @hich is more devoted to the medical area.
component based architecture with the purpose of software

reuse, in general, the architecture design differs, ugaiaié
to the desire to efficiently support a specific project or arch 3. OROCOS

tecture. The frameworks most used in robotic research in- o o
clude [7]: The objective of the OROCOS project is to develop a gen-

eral purpose, modular, open source framework for contiglli
machines and robots [12]. It executes on the Linux and Win-

Player [8]: it is a set of tools for mobile robots, including qq,q operating systems and supports real time kernels such
drivers for robotic devices. Conceptually, it is a hard- ;¢ pra [13] and Xenomai [14].

ware abstraction layer for robotic devices, which also

includes data communication and control programs. The An OROCOS component is a basic unit that executes one

communication interfaces are based on a client/server a@r more actions, which are determined by its activity. Those

chitecture that uses TCP sockets. actions can be a function in the C or C++ language, a script in

its own language or even a hierarchical state machine. Here,

OROCOS[4]: Open RObot COntrol Software (OROCOS) only actions in the C and C+ language are considered. The

was started in 2001 to develop open source code fosomponent activity is started by thet i vi t y class, which

robot control. As it is the framework used in this work, has the parameteRer i od, Pri ori ty andSchedul er.

itis described in further detail in section 3.. ThePer i od parameter is used to define an periodic activity

. , . with priority defined by thé>r i or i t y parameter and sched-
Orca[6]: a fork of the OROCOS project, the Orca project, jaq with the policy defined by théchedul er parameter,

aims to provide construction blocks (components) thagyhich can be a real time scheduler represented by the canstan

could be combined to build arbitrarily complex robotic r~ scHED RT or a non real time scheduler represented by
systems without real-time requirements. It uses the INor~"SCHED OTHER.

ternet Communications Engine (ICE) [9] as the network
middleware. The interface of an OROCOS component is comprised of
the following:

ROSJ[10]: the Robot Operating System is a open source
package that provides operating system services sugb opertiesand Attributes: are variables used to configure
as hardware abstraction, low level device control and and adjust the component. Properties can be written to
inter-process communication, as well as development and read from a file in XML format, hence, they can
tools. The purpose is to create a common platform upon store persistent values. Attributes reflect a member vari-
which researchers could build and share higher level aple of a C++ class and can be read and written to for the

robotics algorithms in areas such as navigation, local- execution time of a program, but do not persist across the
ization, planning and manipulation. program end.

CISST [11]: a set of libraries designed to ease the developOperations: are objects that define the functions that a com-
ment of computer assisted intervention systems. ponent exposes at its interface. When configured as an

Robocontrol
APPLIED ROBOTICS unesp

AND AUTOMATION

operation, any method of any class can be added to tF

Global
Public Engine

interface of a component. This way, functions imple- oston Fiow Interface ; Implementation
mented in C/C++ can be used by scripts or can be calle ! Read - Wite | phlbutes | ATeskantext
from another process or remotely, through the network | send | lqueued

Operations receive arguments and return a value. An of —— 11 ent hr eaqMeBRECp G- Class methocs
eration can be implemented in @nThr ead or in the T QunThread | ueved ‘mappedm
dient Thread. Ad i ent Thr ead operation is per- Peer of A f:ﬁ}rﬁé::i — ead [Exgaution
formed synchronously with the caller component, as it is L e | e

executed in the thread of the caller. On the other hanc ; ; Output Port

anOwnThr ead operation is performed asynchronously W“e mputPort | cal

with the caller component, as it is executed in the threac Data Flow
of the called component, whose execution depends on

the called component activity. Figure 1: OROCOS component interface.

Form the point of view of the component that calls an)]

operation, there are two behaviors as well, defined bg©nf i gur eHook() : configures the component;
theQper ati onCal | er class. When the operation is
invoked though theal | () function, the calling com-

ponent blocks waiting for the execution of the opera-pgat eHook(): component activity;

tion. However, if the operation is invoked through the

send() function, the caller component continues its ex-st opHook () : stops the component activity;
ecution, and receives from tls&nd() function an ob-

ject of theSendHandl e class, which is used to track ¢l eanupHook(): finalizes the component;
the status of the operation and collect its results. By de- . .
fault, operations apre invoked throughcal | () func-y activeHook() : activates the component;

tion. error Hook() : calledin place ofipdat eHook() in case
of non critical errors;

st art Hook() : initializes the component;

Data ports. are objects used to implement data flow. A port
is defined by a unique name in a component, its data typeeset Hook() : recovers from a critical error.
and its port type, which can be a read-only port, with
respect to the component where it is defined, represente
by thel nput Por t class or write-only port, represented ™

by theQut put Port class. An data input port can be . . :
configured to trig the activity of a component or call a The Barrett WAM (Whole Arm Manipulator) is a robotic

function when data is received. Those ports are create ™ Ak four_ or seven degrees_ of freedom, optionally inclu-
asevent por t s and can react to the reception of data. ing a hand with three fingers. Figure 2 shows a 7-DOF WAM
equipped with a BarrettHand, that was used in this work.

THE BARRETT WAM RoOBOT

OROCOS components are derived from the The Barrett WAM has |t§ own'mternal cqmputer (WAM
X . o PC), which executes a real time Linux operating system based
TaskCont ext, which defines the public interface of ;
on Xenomai. However, the WAM control system can be ex-
the component. For a component to have access to the : .
. : . ecuted in an external computer, as well, as the internal CAN
interface of another one, it should be configured as a Peql s |
. us is exposed for external use.
of such a component. Data ports are an exception and can
be accessed without peering. However, data ports should be
connected to each other. That can be done through member
functions of theTaskCont ext class, member function of
the port itself or even through theéepl oyer component,

which can perform an initialization though an XML file.

4.1. Hardware overview

The WAM actuators are drived by Barrett patented power
modules, named Pucks. A Puck is a digital torque controller,
encoder, temperature and current sensor which is mounted di

The TaskCont ext class provides the control interface rectly on each WAM joint. All Pucks and the WAM PC are
for the component, while thExecut i onEngi ne class ex- connected though a CAN bus aMbps.

ecutes the usgr_apphcguon, .ac_cordmgly o the coqﬂgured The Pucks send the joint position data to the WAM PC and
component activity, period, priority and scheduler. Feyar .) N .
receive the torque to be applied to the joints in a simple con-

shows the interface of an OROCOS component and its inte{— . :
. X rol loop. The sampling rate of this control loop can be ad-
action with a peer component [15].

justed up to kHz, but the standard rate is 500.. All com-

Every component has hook functions where the user camunications are monitored by a Safety Board, which checks
attach its code to define the details of the operation of théor the arm speed, torque command values and the overall
component. Those functions are [5]: system status [3].

Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan loris, Walter Fetter Lages, Diego Caberlon Santini

to any desired position. In this state it is no possible to
communicate with Pucks and they do not control the as-
sociate actuators, hence there is no way to obtain data
from sensors or send control signals.

IDLE: there is voltage applied to the motors and the Pucks
are accessible. They control the position of motors and
sustain a brake state, ignoring any torque command.
Hence, in this state it is possible to obtain data from sen-
sors, but it is not possible to actuate the WAM.

ACTIVATED: the Pucks are effectively applying any re-
ceived torque command to the motors. The WAM is
ready for motion. This state can only be reached if there
is not any fault detected by the Safety Board.

4.2. Software overview

There is a libraryl i bbarrett [16], for creating soft-
ware for the WAM. That library is written in C++ and is avail-
able in source code. The main classes and functions are pre-
sented here.

The Execut i onManager class supervises all real time
operations. It is responsible for the program executioregyc
usually defined as 50Hz.

' Through thewamclass the user can access the function-
Figure2: Barrett WAM. alities of the WAM. It implementget () function for the
reading of position, velocity and torque applied to eachtjoi

Figure 3 shows a block diagram of the hardware of eacltS well as the Cartesjan positip n of the hand. Those func-
joint, including the Safety Board, the WAM PC and the CAN UONS return vectors of ptype, jv_type, j t_type and

bus. All joints are connected to the CAN bus in the same Wa)f p_t.ype typgs, respectively. Member functions to move the
arm in Cartesian space an®veHone() andnoveTo(),

that move to arm to the home position or to a specific
ower point, respectively. The r ackRef er enceSi gnal ()
member receives joint references in position and velocity
and tracks them by using a controller implemented in the

WAM PC Hardware of each joint

User —rrre g | i bbarr et library. Another very useful member function
Program Motor B . 4
is gravi t yConpensat e(), which computes the torque
Puck needed for gravity compensation. The controller used by the
7'y T rend e member functions of theamclass is the PID controller im-
Safety Board Read plemented by th&l DCont r ol | er class.
<-| R Thewamclass has a torque input object. The torque effec-
v v tively applied to the robot is a sum of the torques individal
CAN Bus computed by thé?l DCont r ol | er of each joint for each
reference, the torque computed to compensate for the gravit
Figure3: Block diagram of the WAM har dware. and the torque received by the input object.
There are three safety states: The Safety Board is used by ti8af et yModul e class,

which monitors the WAM state and exposes the security state

E-STOP: there is no voltage applied to the motors. Actu—Of the WAM at any given time.

ally, the motor power lines and the ground lines are con- Finally, there is thér oduct Manager class, which man-
nected together, which results in a resistive brake on thages the WAM, by initializing hardware components, such as
joints. Effectively, the arm do not exercises any force,the Pucks, the CAN bus and the Safety Board, and the soft-
but slightly resists to any force applied to it, resulting inware components, by creating tlsecut i onManager ,

a slow fall down until a physical opposition is reached.WamandSaf et yMbdul e objects. It also reads the configu-
Also, it the WAM can be easily moved by the operatorration file associated to the specific robot in use, thus obtai

Robocontrol

5" WORKSHOP IN
APPLIED ROBOTICS
AND AUTOMATION

ing kinematic and inertial parameters. Therefore, this<la
used for starting the control program and initialize theeobg

AVA
AVAVAY

unesp™

actuation are written in response to a system sampling
event.

for accessing the WAM hardware [17]. .
Control | er NPl D: implements the system controller,

through an independent controller for each joint. It is
specialized from th&€ont r ol | er component model,
which has input ports for references and sensor val-
ues, an output for actuation values, and a port of
Event Port to receive the system sampling event. The
Cont r ol | er NPI D concatenates the ports for commu-
nication with theN Pl D components.

5. CONTROL ARCHITECTURE

An architecture for controlling manipulator robots was de-
veloped in [1], with the implementation of generic compo-
nents. Those components are independent from each other
and from the hardware of a specific robot. Thus, they can
be configured and specialized for the control of any robot
system. That architecture is based on gen@e?(nsor, Cont rol | er WAM implements the lower level control of
Act uat or, Control |l er andSa_n‘p| er components. In the system, through the controller available in the

the current work, some of those components are then special- | i bbarrett library. This components is specialized
ized for the Barrett WAM robot: from theCont r ol | er component model and is simi-

lar in functionality to theCont r ol | er NPI D compo-
nent. However, th€ont r ol | er NPl Dcomponent im-
plements a independent joint control with PID controller,
while the Cont r ol | er WAM uses the original WAM
controller available through tHei bbarr et t library.

Sanpl er: generates the sampling tick for the system, which
synchronizes the other components. This component ex-
poses an output porSanpl ePor t), which is used to
generate the sampling for the system through a write
to this port accordingly to the component activity. All p| p; implements a PID controller for a single joint.
other components requiring synchronization with the
system sampling should implement an input port of
the Event Port type, that should be connected to the
Sanpl ePort port of theSanpl er component. This
component is not specialized for the Barrett WAN, as th
generic one has enough functionalities.

Figure 4 shows how the base components interact with each
other to implement a control loop. Note that this architeztu
eis general for any robot. The function and interface of each
component as well as details of its operation is presented in

details in [1]. Those components are specialized to the com-

Sensor WAM abstracts the sensors of the Barrett WAM ponents for the Barrett WAM robot and their topologies are
robot. It is specialized from th&ensor component discussed in section 7..
model, which does not has an implementation, but spec-
ifies an interface with an output data port where the val-
ues read from sensors should be written. This port i
represented by a vector of sizZ€, the number of de-
grees of freedom. The base mod&nsor , has a input
port of theEvent Port type, SamplePort, where it re-
ceives the sampling of the system. Each write to this por
generates an asynchronous call to a callback functior
which executes the task of the component. That callbac
function is a virtual member function of thBensor
component, which is implemented in tBensor WAM
component. In the case of tf&ensor W\am compo-
nent, this task is a request for read the sensors. Thi
component has another data input porEsknt Por t
type,l nput Sensor Por t , to receive sensor data from
lower level hardware interface. After a request for sen-
sor readings, a write to thenput Sensor Port port
forces the execution of a callback, that gets the sensor
data and write them to the output data port.

Sensor Controller Actuator

sensor *
 —

sensor act

Data
Ports

Data
Ports

Data
Ports

reference
—_—=

Sanpl ePor t Sanpl ePor t Sanpl ePor t

Sampler

Sanpl e

Sanpl ePor t

Figure 4: Component | nteractions.

A standard OROCOS componemnmiAxesCGener at or,
Act uat or WAM abstracts the system actuators. Itis specialis used to generate a reference trajectory for the motion of
ized from theAct uat or component model, which has the joints to the desired point. TheAxesCener at or
a input data port to receive the values to be applied to theomponent uses a trapezoidal velocity profile with maxi-
actuators, represented by a vector of s@nd a input mum acceleration and velocity to compute the trajectory
port to receive the sampling of the system, as done fofrom the currentN axis position to a desired position in a
the Sensor component model. Théct uat or WAM given time interval. Initial and final velocities and accel-
component adds an output port where, the values foerations are null. The motion of all axis are normalized

Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan loris, Walter Fetter Lages, Diego Caberlon Santini

for simultaneous start and stop. The maximum velocityware initialization succeeds, then tke ocosWAm compo-
maximum acceleration and number of joints are propertiesent calls its configuration functiom,onf i gur eHook(),

of the componentyrax_vel , max_acc andnum axes, which forces thd’r oduct Manager to check for the Safety
hence configurable. TheoveTo operation starts the tra- Board and receive a pointer to ttgaf et yModul e ob-
jectory, receiving as parameters a vector with desired pgect. TheSaf et yMbdul e checks the WAM status, which
sition and the trajectory time and theeset Positi on is logged to the user, and waits for an IDLE status. After the
operation stops the motion and maintains the current robdafety initialization, thePr oduct Manager checks for the
position setting the desired position to the current positi WAM identification and theconf i gur eHook() function
and the desired velocity to zero. Finally, an input port,returns.

nAxesSensor Posi ti on, receives the current axis posi-
tion and two output portsjAxesDesi r edPosi ti on and
nAxesDesi redVel oci t y, expose the computed position
and velocity, respectively.

After the configuration, the Or ocos\Wam compo-
nent executes thest art Hook() function, where the
Pr oduct Manager object initializes the Pucks and the
wam object by reading the hardware configuration file.
The wam initialization includes a prompt for the user
6. INTERFACING THE BARRETT WAM 1O OROCOS to manually activate the robot through the control pad,

which changes its status to ACTIVATED. Finally, the

In order to use the WAM robot with OROCOS, there isgravi t yConpensat e() function from thenamobject is
the need to develop an interface between the robot, or morlled, initiating the gravity compensation. Then, the WAM
precisely, thd i bbarrett library and the OROCOS sys- is ready for use.
tem. That interface assumes the form of OROCOS compo-
nents whose activities call the functions of thiebbar r et t
library.

Given that theOr ocosWam component is aperiodic and
does not implements thepdat eHook () function, it does
not perform any action if not called. Hence, its execution is
execution is only due to activity in its operation and itsuhp
port. Figure 5 shows the component interface and its interna
activity execution.

6.1. O ocosWamcomponent

This component is the only one to interact directly with the
| i bbarrett library, hence it is the only one specific to the request

WAM robot. The other components described here do nof™™ . % | A
interact directly with thd i bbarrett library or with the

WAM, which shows the generality of the approach and theeon Wiite Values
ease tO Support Other models Of rObOtS Readings Output Port Position/Velocity/Torque
' -~ j oi nt Dat aPort
The Or ocos\Wam component is composed with objects
. . . . Export i .
created from classes defined in thebbarrett library, como Output Port Yrte Vawes
which are used for hardware verification, robot initializa- comoe | ot eearert Toraue
tion, status verification and motion of the WAM robot. qecepe Functon (™) cais conoller
More specifically, objects of classé¥ oduct Manager, Reference '””“‘p:‘;’;ef ot o petPoskeference ———
Position
Saf et yMbdul e andWAMare members of thér ocosVam —— cuncton
Componeﬂt Receive Call) Executes
Torque Input Port — set Joi nt Tor E— \!\l/\\/i\’(:
Regarding its interface, theér ocosWam component has tor Joint Port K K
four data ports, which are vectors andChi ent Thr ead
operation. Two are input ports and two are output ports. Figure5: Or ocos\Wamcomponent interface and operation.

The j oi nt sDat aPort output port exposes the posi-
tion, velocity and torque data from WAM sensors. The When theget Joi nt Sensor sQper at i on operation is
posRef Por t input port receives the reference position tocalled, the component executes et Joi nt Sensor s()
be used by the controller implemented in thebbar r et t function, which uses thget () function from thewamob-
library, while the t or Ref Port input port receives the jectto obtain position, velocity and torque data for eachtjo
torque values to be applied to each joint actuator. Thé&hose data are written as a vector in red nt sDat aPor t
Cont r ol Dat aPort output port exposes the values com-port.

puted by the controller implemented in thebbarrett li-
brary. Both input ports of thEvent Por t type. Finally, the
get Joi nt Sensor sOper at i on operation starts a read-
ing in the WAM sensors.

The Or ocos\Wam component can use the controller im-
plemented in thé i bbarrett library or not. To use the
I i bbarrett controller, theposRef Port port should re-
ceive position references for each joint. Those values are
The initialization of theOr ocosWam components calls used by a PID controller implemented in thebbarr et t
the initialization of thePr oduct Manager object, which library to obtain the control signal and are exported by the
checks and initializes the WAM hardware. If the hard-Control Dat aPort port. The values for the actuators

Robocontrol
APPLIED ROBOTICS unesp

AND AUTOMATION

should be written in the or Joi nt Port port, which re- .
. User noveTo(Ref Pos, ti me)
ceives the values to be directly applied to each joint. Comands |

”””” Ref erence Traj ectory|
When the posRef Port port is written to, a call- Generator
back function reads the value from the port and calls the —s™'d Position
functiont r ackRef er enceSi gnal () from thewamob-
ject with the reference values as parameters. That func Fef o ence
tion uses the interndli bbarrett controller to compute
the torques for each joint, which are then written to the | saml e
Cont r ol Dat aPort output port. Sampl er Position

Control | er WA!

A write to thet or Joi nt Port port forces the call of a sampl e
callback function that checks if the torque values are unde
the limits for each joint, avoiding dangerous motions. If al Posi ti o
values are under the limits, data are sent tovthenobject,
that sends them to the Pucks, which apply the torques to ea

joint actuator. Sensor

Sanpl e

When finalizing, theOr ocosWWamcomponent, though its g
st opHook() function, calls themoveHone() function

from thewamobject. This function moves the WAM to its 1

home position, avoiding dangerous falls and collisionswhe | get ol nt sensorls

the control system is shutdown and no gravity compensatio Crocosvam Toraue
eX'StS any more. Position/Velocity/Torque

Act uati ol

Act uat or

Posi tion

Actuation

Ref erence

Sanpl e

6.2. Ref er ence Component

This component was created as an interface for specifi- ~ "'9re® Controlwiththe Cont rol I er WAMcomponent.

cation of the reference position for each joint. The com-

ponent has thg oi nt Posi ti on and noveTi nme prop-

erties and thenoveToRef Oper ati on operation. The In every occurrence of 8anpl e event, theSensor com-

j oi nt Posi ti on property stores the reference position for ponent request a reading from the sensors and updates-its out
each joint and is initialized with the actual position of kac put port with the values.

joint. The user can them change the desired position an call
thenoveToRef Oper at i on operation to move to robot to
the reference position in a time given by theveTi ne
property. TheoveToRef Oper ati on operation uses the
nAxesGener at or component to generate a reference tra
jectory. The defaultmoveTi ne is 5 s, but that can be
changed by the user.

To move the WAM, the user should change the
j oi nt Posi tion property of theRef erence compo-
nent and execute theoveToRef Qper ati on operation.
TheRef er ence componentthen, useg\xesGener at or
component to interpolate a trajectory, sending the valaes t
theCont r ol | er WAMcomponent.

The OrocosWam component receives the trajectory
from the Control | er Wam component, and uses the
I i bbarr et t internal controller to compute the actuator val-

Two control topologies were implemented to show the genyes' Those values are sent to et uat or component,

erality of the proposed approach. The first one uses the ori%—/.hICh sends them to thér ocos\Wam component, that ap-

inal position controller implemented in thé bbarr et t li- lies the values to the robot actuators.

brary, which is abstracted by theont r ol | er WAM com- The |ibbarrett controller is abstracted in the

ponent, while the second one bypasses|thébarr et t Control | er WAMcomponent and théct uat or compo-

controller and uses th€ont r ol | er NPI D component pro- nent abstracts the actuators, while tBeocosWam com-

posed in [5]. ponent interfaces with the lower level functions of the
i bbarrett library.

7. IMPLEMENTATION OF CONTROLLERS

7.1. Control with the Cont r ol | er WAMComponent
7.2. Control with the Cont r ol | er NPI D Component
Figure 6 shows the topology for this controller. The arrows
with dashed lines indicate a call operation, while the asrow Figure 7 shows the topology for this controller. From the
with solid lines indicate a data flow through data ports. Theuser point of view, there is no change, as the reference posi-
system sampling is shown by small arrows, to avoid unnecesion is manipulated through tHeef er ence component, as
sary detail. in section 7.1..

Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan loris, Walter Fetter Lages, Diego Caberlon Santini

The trajectory generated by théxesGener at or com- implement more sophisticated controllers, such as a caamput
ponent is sent to th€ont r ol | er NPI D component, which torque controller, just by replacing the controller comgot)
splits the reference position vector and the vector of ciirre as shown in [5].

itions received from nsor component in the refer- . . .
positions received from thBensor component in the refe The user interface is very modular, as well. It is enough to

ence position and the current position for the PID contraife .
i replace théref er ence component by another one, with the
each joint. Each PID controller computes the actuator value

and send it to theCont r ol | er NPI D component, which same standard interface.

concatenates them in a new actuator values vector and sends

it to theAct uat or component. Théct uat or component REFERENCES

sends the actuator values to thieocos\WWam where they are

effectively applied to th@ardware. Note that the sensor read- [1] D. C. Santini and W. F. Lages, “An architecture for robohtrol based

P . . . on the OROCOS framework,” ifProceedings of the 4th Workshop
ing is performed in the same way as in the section 7.1.. on Applied Robotics and Automation, (Bauru, SP, Brazil), Sociedade

Brasileira de Automatica, 2010.

[2] D. Brugali and P. Scandurra, “Component-based robotgireering,
part i: Reusable building blockd,EEE Robotics and Automation Mag-
Ref erence Traj ectory azine, vol. 16, pp. 84-96, Dec. 2009.

Gener at or [3] Barrett Technology, Inc., Cambridge, MAWAM User Manual, 2011.

Sanpl e Position [4] H. Bruyninckx, “Open robot control software: The oroga®ject,” in
Proceedings of the 2001 IEEE International Conference on Robotics

and Automation, (Seoul, South Korea), pp. 2523-2528, |IEEE Press,
Ref erence 2001.

Posi tion .

User noveTo(Ref Pos, ti ne)

Commands

PI D1

posi o [5] D.C. Santiniand W. F. Lages, “An open control system fonipalator
Sanpl e ref robots,” in ABCM Symposium Series in Mechatronics (V. J. de Negri,
sampler | Posi tion tord ¢ E. A. Perondi, M. A. B. Cunha, and O. Hirikawa, eds.), vol. g, #90—
posN PI DN 498, Rio de Janeiro, RJ, Brazil: Associagao Brasileira dgeharia e

refl

torh Ciéncias Mecanicas, 2010.

[6] A.Brooks, T. Kaupp, A. Makarenko, A. Oreback, and S. Vlith, “To-
wards component-based robotics, Rroceedings of the |IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, (Edmonton,
Canada), pp. 163-168, IEEE Press, Aug. 2005.

[7] M.Y.Jung, A. Deguet, and P. Kazanzides, “A componentehbaarchi-

sensor Q ot uat or tecture for flexible integration of robotic systems,” Rnoceedings of

sanpl e Sanpl e the IEEE/RSJ International Conference on Intelligent Robots and Sys-
—> Control —> tems, (Taipei, Taiwan), pp. 6107-6112, IEEE Press, Oct. 2010.

Loo

’ [8] B.P.Gerkey, R.T. Vaughan, and A. Howard, “The playagst project:
Tools for multi-robot and distributed sensor systems,Pinceedings
of the 11™ International Conference on Advanced Robotics (ICAR 03),
get Joi nt Sensor (Coimbra, Portugal), pp. 317-323, IEEE Press, Jun./JuB.200

O ocosvam Tordue [9] M. Henning, “A new approach to object-oriented middleeal EEE
Internet Computing, vol. 8, pp. 6675, Jan. 2004.

[10] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, Xils,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robet-op
ating system,” irProceedings of the |EEE Intermatonal Conferencd on

.) Robotics and Automation Workshop on Open Source Robotics, (Kobe,
Figure 7: Control with the Cont r ol | er NPl D component. Japan), IEEE Press, May 2009

Sanpl e

Control | er NPID

Posi ti ol

Actuati o

Position/Velocity/Torque

[11] “The CISST libraries,” 2008ht t p: / / www. ci sst. or g/ ci sst .

[12] OROCOS, “Open robot control software,” 200Zht t p: / / www.
8. CONCLUSION or 0cos. or g>.
[13] P. Mantegazza, “DIAPM RTAI for linux: Whys, whats and
This work proposed an interfacing integrating the Barrett =~ hows,” in Proceedings of the Real Time Linux Workshop, (Vi-
WAM robot to the OROCOS framework. A component was enna, Austria), Vienna University of Technology, 1999ht t ps:

. " ’ . [/ ww. rtai.org/index. php?nodul e=docunent s&JAS_
c_reated to export some functionalities c_)f thebbar r et t Docunent Manager _op=downl oadFi | e&JAS_Fi | e_i d=
library through an standard OROCOS interface. That com- 31>,
ponent was integrated in a open architecture defining comp@t4] Xenomai, “Xenomai: Real-time framework for linux,” Jan 201
nents for a control system as proposed in [1]. <http://wwmv. xenomai . or g>.

. [15] “Orocos component builder's manual,” 2011. http:
Two control topologies were presented to show the gener- ~ // ww. or ocos. or g/ st abl e/ docunent ati on/rtt/v2. x/

ality of the proposed abstraction of the Barrett WAM robot doc- xm / or ocos- conponent s- manual . htni .

through the proposed OROCOS component:the first one ugks] Barrett Technology, Inc., Cambridge, MAjbbarrett Programming
ing the original controller implemented in theé bbar r et t Manual, 2011.

library and the other implementing and independent PID conlL7] “Libbarrett doxygen documentation,” 2011. http://web.
troller for each joint. The same methodology could be usedto ~ Pa'"ett.com I ibbarrett/.

