
INTEGRATING THE OROCOS FRAMEWORK AND THE BARRETT WAM ROBOT

Darlan Ioris1 , Walter Fetter Lages1 , Diego Caberlon Santini1

1UFRGS, Porto Alegre, Brazil, darlanioris@ece.ufrgs.br, fetter@ece.ufrgs.br, diegos@ece.ufrgs.br

Abstract: This paper deals with the development of an inter-
face between the OROCOS framework and the Barret WAM
robot. The interface is designed as an OROCOS component,
which integrates the Barrett WAM with a previously devel-
oped open architecture for robot control.

Keywords: OROCOS, Control architecture, Open architec-
ture

1. INTRODUCTION

The need for high performance robots imposes a growing
complexity in hardware, software and control architectures.
The reuse of existing knowledge and functional blocks makes
the task of designing a new robot system easier, faster and
more reliable. However, such a reuse is not yet the main-
stream in the robot industry. Usually, commercial robots are
based on proprietary architectures, which precludes its inte-
gration in more complex systems or even the software reuse.

In order to overcome such problems, new development
methodologies are necessary. Those methodologies should
enable the integration of technologies and knowledge of all
designers involved in such projects.

In an open architecture, all the details of the robot are doc-
umented and the software and hardware structures are such
that new sensors, controllers and interfaces can be added. All
aspects of the robot design can be easily modified [1]. There-
fore, by using open architectures, one intents to create design
standards that makes the system integration and hardware and
software reuse easier.

Open architectures can be used with many systems and
should have an implementation abstracting the hardware and
basic software, to avoid dependence on any specific producer.
Hence, it should be independent of the supporting platform.

A methodology that provides the tools for the de-
velopment open architectures with such characteristics is
the Component-Based Software Engineering (CBSE). That
methodology uses the concept of component to develop soft-
ware autonomous units, each one able to abstract some hard-
ware part or functionality and exposing an standard interface
to the remaining system. That modularity, enabled by com-
ponents, is the base for an open architecture.

However, the development of component based software
and code reuse is not yet a common practice in robotics,
Nowadays, most research and software development are
based on custom software architectures, built from scratch
[2]. Hence, most robot applications are developed for a spe-
cific purpose, which accumulates a huge amount of software

implementing complex systems. Nonetheless, that does not
favor the software reuse, as that software is specific for a
hardware, operating system or communication media. Fur-
thermore, all the functionality and knowledge is hard-coded
in the program and not exposed in a clear and consistent in-
terface.

This paper proposes to integrate the Barrett WAM manipu-
lator robot [3] to the OROCOS framework [4], thus enabling
the use of the robot through components built for this frame-
work and the integration of the robot in an open control archi-
tecture proposed in [1].

The state of the art in the development of robotics soft-
ware and the main frameworks are presented in section 2.,
along with some concepts of CBSE. In section 3., the ORO-
COS framework is discussed in more detail, while the section
4. introduces the hardware and software of the Barrett WAM
robot, discussing its functionalities and its proprietarylibrary.
The architecture proposed in [5] and its use with the most re-
cent version of the OROCOS framework are detailed in sec-
tion 5.. The interfacing of thelibbarrett library with the
OROCOS framework, through a component is presented in
section 6., while its use in an open architecture is dealt with
in section 7., where the implementation of two types of con-
trollers are presented. Finally, conclusions and future devel-
opment directions are presented in section 8..

2. COMPONENT-BASED ROBOTICS

The application of CBSE concepts to robotics enables
the development and handling of complex robotics systems
through the use of previously developed components [6],
yielding the following benefits:

Complexity management: even the simpler robotic systems
are complex due to existence of many elements such as
actuators, sensors and controllers that interact with each
other. Most of them require a proper execution thread
synchronously or asynchronously communicating with
other threads. A method to standardize the communica-
tion and delimit each element according to its tasks and
characteristics is necessary to manage the system com-
plexity.

Flexibility: for the development of complex projects, it is
very important to be able to develop, change and test spe-
cific modules without side-effects in the whole system.
The flexibility of a component based system enables to
focus on a particular task, retaining the functionality of
the remaining system.

1



Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan Ioris, Walter Fetter Lages, Diego Caberlon Santini

Distributed environments: distributed robotic systems are
widely used, typically where mobile robots are con-
trolled by a remote station. The modularity of a com-
ponent based system makes it simpler to communicate
with a swarm of robots.

Variety of hardware and operating systems: robotic sys-
tems are implemented in a variety of hardware platforms
and operating systems. The modularization achieved
through components enables decoupling the application
implementation from the underlying hardware and op-
erating systems. Hence, it becomes possible to build
generic applications, without dependencies on those fac-
tors, that would be useful in many situations.

Those properties enables the development of new applica-
tions based on existing and reliable components, thus ensur-
ing more robustness to the new system.

Many architectures, frameworks and components have
been proposed and developed to help on the process of build-
ing robotic control systems. Although most systems adopt a
component based architecture with the purpose of software
reuse, in general, the architecture design differs, usually due
to the desire to efficiently support a specific project or archi-
tecture. The frameworks most used in robotic research in-
clude [7]:

Player [8]: it is a set of tools for mobile robots, including
drivers for robotic devices. Conceptually, it is a hard-
ware abstraction layer for robotic devices, which also
includes data communication and control programs. The
communication interfaces are based on a client/server ar-
chitecture that uses TCP sockets.

OROCOS [4]: Open RObot COntrol Software (OROCOS)
was started in 2001 to develop open source code for
robot control. As it is the framework used in this work,
it is described in further detail in section 3..

Orca [6]: a fork of the OROCOS project, the Orca project,
aims to provide construction blocks (components) that
could be combined to build arbitrarily complex robotic
systems without real-time requirements. It uses the In-
ternet Communications Engine (ICE) [9] as the network
middleware.

ROS [10]: the Robot Operating System is a open source
package that provides operating system services such
as hardware abstraction, low level device control and
inter-process communication, as well as development
tools. The purpose is to create a common platform upon
which researchers could build and share higher level
robotics algorithms in areas such as navigation, local-
ization, planning and manipulation.

CISST [11]: a set of libraries designed to ease the develop-
ment of computer assisted intervention systems.

Those frameworks are compared in Table 1 [7], which
shows the level of support for the Windows, Linux, RTOS
(Real-Time Operating System), MT (Multi-Thread), MP
(Multi-Process) e MH (Multi-Host) platforms for each frame-
work. Regarding the RTOS support, it is important to note
that what is considered here is the support for hard real-time
execution and not just the possibility to execute the frame-
work in a RTOS.

Table 1: Common frameworks used in robotics.

Framework Windows Linux RTOS MT MP MH

Player partial yes no no yes yes

OROCOS yes yes yes yes yes yes

Orca partial yes partial no yes yes

ROS partial yes partial no yes yes

CISS yes yes yes yes yes yes

The OROCOS framework will be used here as it provides
more functionalities and has a scope broader than CISST,
which is more devoted to the medical area.

3. OROCOS

The objective of the OROCOS project is to develop a gen-
eral purpose, modular, open source framework for controlling
machines and robots [12]. It executes on the Linux and Win-
dows operating systems and supports real time kernels such
as RTAI [13] and Xenomai [14].

An OROCOS component is a basic unit that executes one
or more actions, which are determined by its activity. Those
actions can be a function in the C or C++ language, a script in
its own language or even a hierarchical state machine. Here,
only actions in the C and C+ language are considered. The
component activity is started by theActivity class, which
has the parametersPeriod, Priority andScheduler.
ThePeriod parameter is used to define an periodic activity
with priority defined by thePriority parameter and sched-
uled with the policy defined by theScheduler parameter,
which can be a real time scheduler represented by the constant
ORO_SCHED_RT or a non real time scheduler represented by
ORO_SCHED_OTHER.

The interface of an OROCOS component is comprised of
the following:

Properties and Attributes: are variables used to configure
and adjust the component. Properties can be written to
and read from a file in XML format, hence, they can
store persistent values. Attributes reflect a member vari-
able of a C++ class and can be read and written to for the
execution time of a program, but do not persist across the
program end.

Operations: are objects that define the functions that a com-
ponent exposes at its interface. When configured as an

2



operation, any method of any class can be added to the
interface of a component. This way, functions imple-
mented in C/C++ can be used by scripts or can be called
from another process or remotely, through the network.
Operations receive arguments and return a value. An op-
eration can be implemented in itsOwnThread or in the
ClientThread. A ClientThread operation is per-
formed synchronously with the caller component, as it is
executed in the thread of the caller. On the other hand,
anOwnThread operation is performed asynchronously
with the caller component, as it is executed in the thread
of the called component, whose execution depends on
the called component activity.

Form the point of view of the component that calls an
operation, there are two behaviors as well, defined by
theOperationCaller class. When the operation is
invoked though thecall() function, the calling com-
ponent blocks waiting for the execution of the opera-
tion. However, if the operation is invoked through the
send() function, the caller component continues its ex-
ecution, and receives from thesend() function an ob-
ject of theSendHandle class, which is used to track
the status of the operation and collect its results. By de-
fault, operations are invoked through acall() func-
tion.

Data ports: are objects used to implement data flow. A port
is defined by a unique name in a component, its data type
and its port type, which can be a read-only port, with
respect to the component where it is defined, represented
by theInputPort class or write-only port, represented
by theOutputPort class. An data input port can be
configured to trig the activity of a component or call a
function when data is received. Those ports are created
aseventports and can react to the reception of data.

OROCOS components are derived from the
TaskContext, which defines the public interface of
the component. For a component to have access to the
interface of another one, it should be configured as a peer
of such a component. Data ports are an exception and can
be accessed without peering. However, data ports should be
connected to each other. That can be done through member
functions of theTaskContext class, member function of
the port itself or even through thedeployer component,
which can perform an initialization though an XML file.

The TaskContext class provides the control interface
for the component, while theExecutionEngine class ex-
ecutes the user application, accordingly to the configured
component activity, period, priority and scheduler. Figure 1
shows the interface of an OROCOS component and its inter-
action with a peer component [15].

Every component has hook functions where the user can
attach its code to define the details of the operation of the
component. Those functions are [5]:

Peer of A

Execution Flow

Read - Write

Send

Send

Call

Call

Write

Write

Read

Data Flow

Public
Interface

Attributes
Properties

ClientThread

OwnThread

Input Port

Input Port

Output Port

EventPort

Global
Engine

Engine

queued

queued
queued

mapped to

mapped to

read

write

call

Implementation

A TaskContext

C++ Class methods

Execution

Callback

Figure 1: OROCOS component interface.

configureHook(): configures the component;

startHook(): initializes the component;

updateHook(): component activity;

stopHook(): stops the component activity;

cleanupHook(): finalizes the component;

activeHook(): activates the component;

errorHook(): called in place ofupdateHook() in case
of non critical errors;

resetHook(): recovers from a critical error.

4. THE BARRETT WAM ROBOT

The Barrett WAM (Whole Arm Manipulator) is a robotic
arm with four or seven degrees of freedom, optionally inclu-
ing a hand with three fingers. Figure 2 shows a 7-DOF WAM
equipped with a BarrettHand, that was used in this work.

The Barrett WAM has its own internal computer (WAM
PC), which executes a real time Linux operating system based
on Xenomai. However, the WAM control system can be ex-
ecuted in an external computer, as well, as the internal CAN
bus is exposed for external use.

4.1. Hardware overview

The WAM actuators are drived by Barrett patented power
modules, named Pucks. A Puck is a digital torque controller,
encoder, temperature and current sensor which is mounted di-
rectly on each WAM joint. All Pucks and the WAM PC are
connected though a CAN bus at 1Mbps.

The Pucks send the joint position data to the WAM PC and
receive the torque to be applied to the joints in a simple con-
trol loop. The sampling rate of this control loop can be ad-
justed up to 1kHz, but the standard rate is 500Hz. All com-
munications are monitored by a Safety Board, which checks
for the arm speed, torque command values and the overall
system status [3].

3



Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan Ioris, Walter Fetter Lages, Diego Caberlon Santini

Figure 2: Barrett WAM.

Figure 3 shows a block diagram of the hardware of each
joint, including the Safety Board, the WAM PC and the CAN
bus. All joints are connected to the CAN bus in the same way.

WAM PC

User

Program

Safety Board

Read/Write

Read/Write

Read
Read

CAN Bus

DC

Power

Actuation

Puck

Motor

Sensors

Hardware of each joint

Figure 3: Block diagram of the WAM hardware.

There are three safety states:

E-STOP: there is no voltage applied to the motors. Actu-
ally, the motor power lines and the ground lines are con-
nected together, which results in a resistive brake on the
joints. Effectively, the arm do not exercises any force,
but slightly resists to any force applied to it, resulting in
a slow fall down until a physical opposition is reached.
Also, it the WAM can be easily moved by the operator

to any desired position. In this state it is no possible to
communicate with Pucks and they do not control the as-
sociate actuators, hence there is no way to obtain data
from sensors or send control signals.

IDLE: there is voltage applied to the motors and the Pucks
are accessible. They control the position of motors and
sustain a brake state, ignoring any torque command.
Hence, in this state it is possible to obtain data from sen-
sors, but it is not possible to actuate the WAM.

ACTIVATED: the Pucks are effectively applying any re-
ceived torque command to the motors. The WAM is
ready for motion. This state can only be reached if there
is not any fault detected by the Safety Board.

4.2. Software overview

There is a library,libbarrett [16], for creating soft-
ware for the WAM. That library is written in C++ and is avail-
able in source code. The main classes and functions are pre-
sented here.

TheExecutionManager class supervises all real time
operations. It is responsible for the program execution cycle,
usually defined as 500Hz.

Through thewam class the user can access the function-
alities of the WAM. It implementsget() function for the
reading of position, velocity and torque applied to each joint,
as well as the Cartesian position of the hand. Those func-
tions return vectors ofjptype, jv_type, jt_type and
cp_type types, respectively. Member functions to move the
arm in Cartesian space aremoveHome() andmoveTo(),
that move to arm to the home position or to a specific
point, respectively. ThetrackReferenceSignal()
member receives joint references in position and velocity
and tracks them by using a controller implemented in the
libbarret library. Another very useful member function
is gravityCompensate(), which computes the torque
needed for gravity compensation. The controller used by the
member functions of thewam class is the PID controller im-
plemented by thePIDController class.

Thewam class has a torque input object. The torque effec-
tively applied to the robot is a sum of the torques individually
computed by thePIDController of each joint for each
reference, the torque computed to compensate for the gravity
and the torque received by the input object.

The Safety Board is used by theSafetyModule class,
which monitors the WAM state and exposes the security state
of the WAM at any given time.

Finally, there is theProductManager class, which man-
ages the WAM, by initializing hardware components, such as
the Pucks, the CAN bus and the Safety Board, and the soft-
ware components, by creating theExecutionManager,
Wam andSafetyModule objects. It also reads the configu-
ration file associated to the specific robot in use, thus obtain-

4



ing kinematic and inertial parameters. Therefore, this class is
used for starting the control program and initialize the objects
for accessing the WAM hardware [17].

5. CONTROL ARCHITECTURE

An architecture for controlling manipulator robots was de-
veloped in [1], with the implementation of generic compo-
nents. Those components are independent from each other
and from the hardware of a specific robot. Thus, they can
be configured and specialized for the control of any robot
system. That architecture is based on genericSensor,
Actuator, Controller andSampler components. In
the current work, some of those components are then special-
ized for the Barrett WAM robot:

Sampler: generates the sampling tick for the system, which
synchronizes the other components. This component ex-
poses an output port (SamplePort), which is used to
generate the sampling for the system through a write
to this port accordingly to the component activity. All
other components requiring synchronization with the
system sampling should implement an input port of
theEventPort type, that should be connected to the
SamplePort port of theSampler component. This
component is not specialized for the Barrett WAN, as the
generic one has enough functionalities.

SensorWAM: abstracts the sensors of the Barrett WAM
robot. It is specialized from theSensor component
model, which does not has an implementation, but spec-
ifies an interface with an output data port where the val-
ues read from sensors should be written. This port is
represented by a vector of sizeN , the number of de-
grees of freedom. The base model,Sensor, has a input
port of theEventPort type,SamplePort, where it re-
ceives the sampling of the system. Each write to this port
generates an asynchronous call to a callback function,
which executes the task of the component. That callback
function is a virtual member function of theSensor
component, which is implemented in theSensorWAM
component. In the case of theSensorWam compo-
nent, this task is a request for read the sensors. This
component has another data input port ofEventPort
type,InputSensorPort, to receive sensor data from
lower level hardware interface. After a request for sen-
sor readings, a write to theInputSensorPort port
forces the execution of a callback, that gets the sensor
data and write them to the output data port.

ActuatorWAM: abstracts the system actuators. It is special-
ized from theActuator component model, which has
a input data port to receive the values to be applied to the
actuators, represented by a vector of sizeN and a input
port to receive the sampling of the system, as done for
the Sensor component model. TheActuatorWAM
component adds an output port where, the values for

actuation are written in response to a system sampling
event.

ControllerNPID: implements the system controller,
through an independent controller for each joint. It is
specialized from theController component model,
which has input ports for references and sensor val-
ues, an output for actuation values, and a port of
EventPort to receive the system sampling event. The
ControllerNPID concatenates the ports for commu-
nication with theN PID components.

ControllerWAM: implements the lower level control of
the system, through the controller available in the
libbarrett library. This components is specialized
from theController component model and is simi-
lar in functionality to theControllerNPID compo-
nent. However, theControllerNPID component im-
plements a independent joint control with PID controller,
while the ControllerWAM uses the original WAM
controller available through thelibbarrett library.

PID: implements a PID controller for a single joint.

Figure 4 shows how the base components interact with each
other to implement a control loop. Note that this architecture
is general for any robot. The function and interface of each
component as well as details of its operation is presented in
details in [1]. Those components are specialized to the com-
ponents for the Barrett WAM robot and their topologies are
discussed in section 7..

Sensor

DataDataData
PortsPortsPorts

SamplePort

SamplePortSamplePortSamplePort

sensor

Controller

sensor*

reference
act

Actuator

act*

Sampler

Sample

Figure 4: Component Interactions.

A standard OROCOS component,nAxesGenerator,
is used to generate a reference trajectory for the motion of
the joints to the desired point. ThenAxesGenerator
component uses a trapezoidal velocity profile with maxi-
mum acceleration and velocity to compute the trajectory
from the currentN axis position to a desired position in a
given time interval. Initial and final velocities and accel-
erations are null. The motion of all axis are normalized

5



Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan Ioris, Walter Fetter Lages, Diego Caberlon Santini

for simultaneous start and stop. The maximum velocity,
maximum acceleration and number of joints are properties
of the component,max_vel, max_acc and num_axes,
hence configurable. ThemoveTo operation starts the tra-
jectory, receiving as parameters a vector with desired po-
sition and the trajectory time and theresetPosition
operation stops the motion and maintains the current robot
position setting the desired position to the current position
and the desired velocity to zero. Finally, an input port,
nAxesSensorPosition, receives the current axis posi-
tion and two output ports,nAxesDesiredPosition and
nAxesDesiredVelocity, expose the computed position
and velocity, respectively.

6. INTERFACING THE BARRETT WAM TO OROCOS

In order to use the WAM robot with OROCOS, there is
the need to develop an interface between the robot, or more
precisely, thelibbarrett library and the OROCOS sys-
tem. That interface assumes the form of OROCOS compo-
nents whose activities call the functions of thelibbarrett
library.

6.1. OrocosWam component

This component is the only one to interact directly with the
libbarrett library, hence it is the only one specific to the
WAM robot. The other components described here do not
interact directly with thelibbarrett library or with the
WAM, which shows the generality of the approach and the
ease to support other models of robots.

The OrocosWam component is composed with objects
created from classes defined in thelibbarrett library,
which are used for hardware verification, robot initializa-
tion, status verification and motion of the WAM robot.
More specifically, objects of classesProductManager,
SafetyModule andWAM are members of theOrocosWam
component.

Regarding its interface, theOrocosWam component has
four data ports, which are vectors and aClientThread
operation. Two are input ports and two are output ports.
The jointsDataPort output port exposes the posi-
tion, velocity and torque data from WAM sensors. The
posRefPort input port receives the reference position to
be used by the controller implemented in thelibbarrett
library, while the torRefPort input port receives the
torque values to be applied to each joint actuator. The
ControlDataPort output port exposes the values com-
puted by the controller implemented in thelibbarrett li-
brary. Both input ports of theEventPort type. Finally, the
getJointSensorsOperation operation starts a read-
ing in the WAM sensors.

The initialization of theOrocosWam components calls
the initialization of theProductManager object, which
checks and initializes the WAM hardware. If the hard-

ware initialization succeeds, then theOrocosWam compo-
nent calls its configuration function,configureHook(),
which forces theProductManager to check for the Safety
Board and receive a pointer to theSafetyModule ob-
ject. TheSafetyModule checks the WAM status, which
is logged to the user, and waits for an IDLE status. After the
safety initialization, theProductManager checks for the
WAM identification and theconfigureHook() function
returns.

After the configuration, the OrocosWam compo-
nent executes thestartHook() function, where the
ProductManager object initializes the Pucks and the
wam object by reading the hardware configuration file.
The wam initialization includes a prompt for the user
to manually activate the robot through the control pad,
which changes its status to ACTIVATED. Finally, the
gravityCompensate() function from thewam object is
called, initiating the gravity compensation. Then, the WAM
is ready for use.

Given that theOrocosWam component is aperiodic and
does not implements theupdateHook() function, it does
not perform any action if not called. Hence, its execution is
execution is only due to activity in its operation and its input
port. Figure 5 shows the component interface and its internal
activity execution.

Controle

Request
Readings

Readings

Export

Export
Control

Receive

Receive

Reference

Position

Torque

Torque

Torque Torque

Operation

getJointSensorsgetJointSensors

Output Port

Output Port

jointDataPort

ControlDataPort

Input Port

Input Port

posRefPort

torJointPort

Function Call

Write Values

Write Values
Position/Velocity/Torque

Function

Function

Call

Call

PositionPosition

libbarrett

Controller

setPosReference

setJointTor

Calls Controller

Executes
Move
WAM

Figure 5: OrocosWam component interface and operation.

When thegetJointSensorsOperation operation is
called, the component executes thegetJointSensors()
function, which uses theget() function from thewam ob-
ject to obtain position, velocity and torque data for each joint.
Those data are written as a vector in thejointsDataPort
port.

The OrocosWam component can use the controller im-
plemented in thelibbarrett library or not. To use the
libbarrett controller, theposRefPort port should re-
ceive position references for each joint. Those values are
used by a PID controller implemented in thelibbarrett
library to obtain the control signal and are exported by the
ControlDataPort port. The values for the actuators

6



should be written in thetorJointPort port, which re-
ceives the values to be directly applied to each joint.

When the posRefPort port is written to, a call-
back function reads the value from the port and calls the
functiontrackReferenceSignal() from thewam ob-
ject with the reference values as parameters. That func-
tion uses the internallibbarrett controller to compute
the torques for each joint, which are then written to the
ControlDataPort output port.

A write to thetorJointPort port forces the call of a
callback function that checks if the torque values are under
the limits for each joint, avoiding dangerous motions. If all
values are under the limits, data are sent to thewam object,
that sends them to the Pucks, which apply the torques to each
joint actuator.

When finalizing, theOrocosWam component, though its
stopHook() function, calls themoveHome() function
from thewam object. This function moves the WAM to its
home position, avoiding dangerous falls and collisions when
the control system is shutdown and no gravity compensation
exists any more.

6.2. Reference Component

This component was created as an interface for specifi-
cation of the reference position for each joint. The com-
ponent has thejointPosition and moveTime prop-
erties and themoveToRefOperation operation. The
jointPosition property stores the reference position for
each joint and is initialized with the actual position of each
joint. The user can them change the desired position an call
themoveToRefOperation operation to move to robot to
the reference position in a time given by themoveTime
property. ThemoveToRefOperation operation uses the
nAxesGenerator component to generate a reference tra-
jectory. The defaultmoveTime is 5 s, but that can be
changed by the user.

7. IMPLEMENTATION OF CONTROLLERS

Two control topologies were implemented to show the gen-
erality of the proposed approach. The first one uses the orig-
inal position controller implemented in thelibbarrett li-
brary, which is abstracted by theControllerWAM com-
ponent, while the second one bypasses thelibbarrett
controller and uses theControllerNPID component pro-
posed in [5].

7.1. Control with the ControllerWAM Component

Figure 6 shows the topology for this controller. The arrows
with dashed lines indicate a call operation, while the arrows
with solid lines indicate a data flow through data ports. The
system sampling is shown by small arrows, to avoid unneces-
sary detail.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

User
Commands

Sample

Sample

Sample

Sample

Sample

moveTo(RefPos,time)

P
o
s
i
t
i
o
n

Position

Position

Position

Position

R
e
f
e
r
e
n
c
e

Reference

Reference

Sampler

Sensor

getJointSensors

Position/Velocity/Torque

Torque

Trajectory

Generator

ControllerWAM

OrocosWam

Actuator

Actuation

A
c
t
u
a
t
i
o
n

Figure 6: Control with the ControllerWAM component.

In every occurrence of aSample event, theSensor com-
ponent request a reading from the sensors and updates its out-
put port with the values.

To move the WAM, the user should change the
jointPosition property of theReference compo-
nent and execute themoveToRefOperation operation.
TheReference component then, usesnAxesGenerator
component to interpolate a trajectory, sending the values to
theControllerWAM component.

The OrocosWam component receives the trajectory
from the ControllerWam component, and uses the
libbarrett internal controller to compute the actuator val-
ues. Those values are sent to theActuator component,
which sends them to theOrocosWam component, that ap-
plies the values to the robot actuators.

The libbarrett controller is abstracted in the
ControllerWAM component and theActuator compo-
nent abstracts the actuators, while theOrocosWam com-
ponent interfaces with the lower level functions of the
libbarrett library.

7.2. Control with the ControllerNPID Component

Figure 7 shows the topology for this controller. From the
user point of view, there is no change, as the reference posi-
tion is manipulated through theReference component, as
in section 7.1..

7



Integrating the OROCOS Framework and the Barrett WAM Robot
Darlan Ioris, Walter Fetter Lages, Diego Caberlon Santini

The trajectory generated by thenAxesGenerator com-
ponent is sent to theControllerNPID component, which
splits the reference position vector and the vector of current
positions received from theSensor component in the refer-
ence position and the current position for the PID controller of
each joint. Each PID controller computes the actuator value
and send it to theControllerNPID component, which
concatenates them in a new actuator values vector and sends
it to theActuator component. TheActuator component
sends the actuator values to theOrocosWam, where they are
effectively applied to thehardware. Note that the sensor read-
ing is performed in the same way as in the section 7.1..

����

����

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

User
Commands

Sample

SampleSample

Sample

Sample

moveTo(RefPos,time)

Position

Position

Position

Position
Reference

Reference

Sampler

Sensor

getJointSensors

Position/Velocity/Torque

Torque

Trajectory

Generator

ControllerNPID

OrocosWam

Actuator

Actuation

pos1

ref1
tor1

posN

refN
torN

PID1

PIDN

Control
Loop

Figure 7: Control with the ControllerNPID component.

8. CONCLUSION

This work proposed an interfacing integrating the Barrett
WAM robot to the OROCOS framework. A component was
created to export some functionalities of thelibbarrett
library through an standard OROCOS interface. That com-
ponent was integrated in a open architecture defining compo-
nents for a control system as proposed in [1].

Two control topologies were presented to show the gener-
ality of the proposed abstraction of the Barrett WAM robot
through the proposed OROCOS component:the first one us-
ing the original controller implemented in thelibbarrett
library and the other implementing and independent PID con-
troller for each joint. The same methodology could be used to

implement more sophisticated controllers, such as a compute
torque controller, just by replacing the controller component,
as shown in [5].

The user interface is very modular, as well. It is enough to
replace theReference component by another one, with the
same standard interface.

REFERENCES

[1] D. C. Santini and W. F. Lages, “An architecture for robot control based
on the OROCOS framework,” inProceedings of the 4th Workshop
on Applied Robotics and Automation, (Bauru, SP, Brazil), Sociedade
Brasileira de Automática, 2010.

[2] D. Brugali and P. Scandurra, “Component-based robotic engineering,
part i: Reusable building blocks,”IEEE Robotics and Automation Mag-
azine, vol. 16, pp. 84–96, Dec. 2009.

[3] Barrett Technology, Inc., Cambridge, MA,WAM User Manual, 2011.

[4] H. Bruyninckx, “Open robot control software: The orocosproject,” in
Proceedings of the 2001 IEEE International Conference on Robotics
and Automation, (Seoul, South Korea), pp. 2523–2528, IEEE Press,
2001.

[5] D. C. Santini and W. F. Lages, “An open control system for manipulator
robots,” inABCM Symposium Series in Mechatronics (V. J. de Negri,
E. A. Perondi, M. A. B. Cunha, and O. Hirikawa, eds.), vol. 4, pp. 490–
498, Rio de Janeiro, RJ, Brazil: Associação Brasileira de Engenharia e
Ciências Mecânicas, 2010.

[6] A. Brooks, T. Kaupp, A. Makarenko, A. Oreback, and S. William, “To-
wards component-based robotics,” inProceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, (Edmonton,
Canada), pp. 163–168, IEEE Press, Aug. 2005.

[7] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based archi-
tecture for flexible integration of robotic systems,” inProceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, (Taipei, Taiwan), pp. 6107–6112, IEEE Press, Oct. 2010.

[8] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” inProceedings
of the 11th International Conference on Advanced Robotics (ICAR’03),
(Coimbra, Portugal), pp. 317–323, IEEE Press, Jun./Jul. 2003.

[9] M. Henning, “A new approach to object-oriented middleware,” IEEE
Internet Computing, vol. 8, pp. 66–75, Jan. 2004.

[10] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot oper-
ating system,” inProceedings of the IEEE Intermatonal Conferencd on
Robotics and Automation Workshop on Open Source Robotics, (Kobe,
Japan), IEEE Press, May 2009.

[11] “The CISST libraries,” 2008.http://www.cisst.org/cisst.

[12] OROCOS, “Open robot control software,” 2002.<http://www.
orocos.org>.

[13] P. Mantegazza, “DIAPM RTAI for linux: Whys, whats and
hows,” in Proceedings of the Real Time Linux Workshop, (Vi-
enna, Austria), Vienna University of Technology, 1999.<https:
//www.rtai.org/index.php?module=documents&JAS_
DocumentManager_op=downloadFile&JAS_File_id=
31>.

[14] Xenomai, “Xenomai: Real-time framework for linux,” Jan 2012.
<http://www.xenomai.org>.

[15] “Orocos component builder’s manual,” 2011. http:
//www.orocos.org/stable/documentation/rtt/v2.x/
doc-xml/orocos-components-manual.html.

[16] Barrett Technology, Inc., Cambridge, MA,Libbarrett Programming
Manual, 2011.

[17] “Libbarrett doxygen documentation,” 2011. http://web.
barrett.com/libbarrett/.

8


