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ABSTRACT

This work focus on the application of model-based predictive
control (MPC) to the trajectory tracking problem of
nonholonomic wheeled mobile robots (WMR). The main
motivation of the use of MPC in this case relies on its
ability in considering, in a straightforward way, control and
state constraints that naturally arise in practical problems.
Furthermore, MPC techniques consider an explicit performance
criterion to be minimized during the computation of the control
law. The trajectory tracking problem is solved using two
approaches: (1) nonlinear MPC and (2) linear MPC. Simulation
results are provided in order to show the effectiveness of both
schemes. Considerations regarding the computational effort
of the MPC are developed with the purpose of analyzing the
real-time implementation viability of the proposed techniques.

KEYWORDS: Mobile robots, trajectory tracking, nonholonomic
systems, model-based predictive control.

1 INTRODUCTION

The field of mobile robot control has been the focus of
active research in the past decades. Despite the apparent
simplicity of the kinematic model of a wheeled mobile robot
(WMR), the design of stabilizing control laws for those
systems can be considered a challenge due to the existence of
nonholonomic (non-integrable) constraints. Due to Brockett’s
conditions (Brockett, 1982), a smooth, time-invariant, static
state feedback control law cannot be used to stabilize a
nonholonomic system at a given configuration. To overcome
this limitation most works use non-smooth and time-varying
control laws (Bloch e McClamroch, 1989; Samson e Ait-
Abderrahim, 1991; Canudas de Wit e Sørdalen, 1992; Yamamoto
e Yun, 1994; McCloskey e Murray, 1997). On the other hand,
this limitation can be avoided when the objective is the tracking
of a pre-computed trajectory (Kanayama et al., 1990; Pomet

et al., 1992; Yang e Kim, 1999; Do et al., 2002; Sun, 2005).

Traditional techniques for the control of nonholonomic WMRs
often do not present good results, due to constraints on inputs
or states that naturally arise. Also, in general, the resulting
closed-loop trajectory presents undesirable oscillatorymotions.
Furthermore, tuning parameters are difficult to choose in order
to achieve good performance since the control laws are not
intuitively obtained. Model-based predictive control (MPC)
appears therefore as an interesting and promising approachfor
overcoming the problems above mentioned. In particular, by
using MPC it follows that: the tuning parameters are directly
related to a cost function which is minimized in order to obtain
an optimal control sequence; constraints on state and control
inputs can be considered in a straightforward way. Thus, control
actions that respect actuators limits are automatically generated.
By considering state constraints, the configuration of the robot
can be restricted to belong to a safe region (Kühne, 2005).
On the other hand, the main drawback of MPC schemes is
related to its computational burden which, in the past years, had
limited its applications only to sufficient slow dynamic systems.
However, with the development of increasingly faster processors
and efficient numerical algorithms, the use of MPC in faster
applications, which is the case of WMRs, becomes possible.

Although MPC is not a new control method, works dealing with
MPC of WMRs are sparse. In (Ollero e Amidi, 1991; Normey-
Rico et al., 1999), GPC (Generalized Predictive Control) isused
to solve the path following problem. In that work, it is supposed
that the control acts only in the angular velocity, while thelinear
velocity is constant. Hence, an input-output linear model is
used to compute the distance between the robot and a reference
path. Note that differently from the trajectory tracking problem,
in the path following the reference is not time-parameterized.
In (Gómez-Ortega e Camacho, 1996) a nonlinear model of the
WMR is used for trajectory tracking. The problem is solved
considering unknown obstacles in the configuration space. A
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neural network helps to solve the optimization problem. Also,
in (Yang et al., 1998) the path following problem is solved
by using a neural network to predict the future behavior of a
car-like WMR. The modelling errors are corrected on-line with
the neural network model. Using a nonlinear model of the
robot, in (Essen e Nijmeijer, 2001) a nonlinear MPC (NMPC)
algorithm in state-space representation is developed, which is
applied to both problems of point stabilization and trajectory
tracking. A modified cost function to be minimized is proposed.
Accordingly to the authors, the MPC developed in that work can
not be applied in real-time, given the high computational effort
necessary in the optimization problem.

In this paper, we are interested in the application of MPC
schemes to control a WMR in the problem of trajectory tracking.
Two approaches based on state-space representation of the
kinematic model of a nonholonomic WMR are developed. First,
a nonlinear MPC (NMPC) is developed, which leads to a
non-convex optimization problem. In a second approach, a
linear technique is proposed to overcome the problem related
to the computational burden of the NMPC. The fundamental
idea consists in using a successive linearization approach, as
briefly outlined in (Henson, 1998), yielding a linear, time-
varying description of the system. From this linear description,
the optimization problem to be solved at each sampling
period is a quadratic program (QP) one, which is convex and
computationally less expensive than the optimization problem
that arises in the classical NMPC.

Finally, analysis regarding the computational effort are carried
out in order to evaluate the real-time implementability of the
MPC strategies proposed here.

2 PROBLEM FORMULATION

A mobile robot made up of a rigid body and non deforming
wheels is considered (Fig. 1). It is assumed that the vehicle
moves without slipping on a plane, i.e., there is a pure rolling
contact between the wheels and the ground. The kinematic
model of the WMR is then given by (Campion et al., 1996):











ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(1)

or, in a more compact form as

ẋ = f(x,u), (2)

wherex = [x y θ]T describes the configuration (position and
orientation) of the center of the axis of the wheels,C, with
respect to a global inertial frame{O,X, Y }. u = [v w]T is
the control input, wherev andw are the linear and the angular
velocities, respectively.

As described in the next sections, in MPC a prediction model
is used and the control law is computed in discrete-time.
Thus, a discrete-time representation of this model becomes
necessary. Considering a sampling periodT , a sampling instant
k and applying the Euler’s approximation to (1), we obtain the

Figure 1: Coordinate system of the WMR.

following discrete-time model for the robot motion:










x(k + 1) = x(k) + v(k) cos θ(k)T

y(k + 1) = y(k) + v(k) sin θ(k)T

θ(k + 1) = θ(k) + w(k)T

or, in a compact representation,

x(k + 1) = fd(x(k),u(k)) (3)

The problem of trajectory tracking can be stated as to find a
control law such that

x(k) − xr(k) = 0

wherexr is a known, pre-specified reference trajectory. It is
usual in this case to associate to this reference trajectoryavirtual
reference robot, which has the same model than the robot to be
controlled. Thus, we have:

ẋr = f(xr,ur), (4)

or, in discrete-time,xr(k + 1) = fd(xr(k),ur(k)).

3 THE NONLINEAR MPC APPROACH

In this section, the trajectory tracking problem is solved with
a NMPC strategy. In order to evaluate the performance of the
approach, simulation results are shown.

MPC is an optimal control strategy that uses the model of the
system to obtain an optimal control sequence by minimizing
an objective function. At each sampling instant, the model is
used to predict the behavior of the system over a prediction
horizon. Based on these predictions, the objective function is
minimized with respect to the future sequence of inputs, thus
requiring the solution of a constrained optimization problem for
each sampling instant. Although prediction and optimization are
performed over a future horizon, only the values of the inputs
for the current sampling interval are used. The same procedure
is repeated at the next sampling instant with updated process
measurements and a shifted horizon. This mechanism is known
asmoving or receding horizon strategy, in reference to the way
in which the time window shifts forward from one sampling
instant to the next one (Camacho e Bordons, 1999; Allgower
et al., 1999).
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From (3), the prediction of the robot motion is obtained as
follows:

x(k + j + 1|k) = fd(x(k + j|k),u(k + j|k)),

wherej ∈ [0, N − 1] and the notationa(m|n) indicates the
value ofa at the instantm predicted at instantn. By defining
error vectors̃x = x−xr andũ = u−ur, we can formulate the
following objective function to be minimized:

Φ(k) =
N

∑

j=1

x̃T (k + j|k)Qx̃(k + j|k)+

+ ũT (k + j − 1|k)R̃u(k + j − 1|k), (5)

whereN is the prediction horizon andQ ≥ 0, R > 0 are
weighting matrices for the error in the state and control variables,
respectively.

We consider also the existence of bounds in the amplitude of the
control variables:

umin ≤ u(k + j|k) ≤ umax, (6)

whereumin stands for the lower bound andumax stands for the
upper bound1. Note that we can write (6) in a more general form
as

Du(k + j|k) ≤ d

with:

D =

[

I

−I

]

, d =

[

umax

−umin

]

,

and, in a similar way, state constraints can be generically
expressed byCx(k + j|k) ≤ c.

Hence, the nonlinear optimization problem can be stated as:

x⋆,u⋆ = arg min
x,u

{Φ(k)} (7)

s. a.

x(k|k) = x0, (8)

x(k + j + 1|k) = fd(x(k + j|k),u(k + j|k)), (9)

Du(k + j|k) ≤ d, (10)

where j ∈ [0, N − 1]. x0 is the initial condition which
corresponds to the value of the states measured at the current
instant. Constraint (9) represents the prediction model and (10)
is the control constraint which may be present or not in the
optimization problem. Notice that the decision variables are both
state and control variables.

The optimization problem (7)–(10) must therefore be solved
at each sampling timek, yielding a sequence of optimal
states {x⋆(k + 1|k), . . . ,x⋆(k + N |k)}, optimal controls
{u⋆(k|k), . . . ,u⋆(k+N−1|k)} and the optimal costΦ⋆(k). The
MPC control law is implicitly given by the first control action
of the sequence of optimal control,u⋆(k|k), and the remaining
portion of this sequence is discarded.

As a case study, let us consider the robot Twil (Lages, 1998),
which have the following limits in the amplitude of the control
variables (Kühne, 2005):

umax = −umin =

[

0.47 m/s
3.77 rad/s

]

(11)

1The symbol≤ stands for componentwise inequalities in this case.

Considering the robot model described by (1), the optimization
problem (7)–(10) is used to solve the problem of trajectory
tracking2, with a cost function in the form of (5). Using
a reference trajectory in "U" form and with the tunning
parameters:N = 5, Q = diag(1; 1; 0, 5), R = diag(0, 1; 0, 1)
and with an initial condition ofx0 = [−1 − 1 0]T , we have the
simulation results shown in Figures 2 and 3.
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Figure 2: Trajectory in theXY plane.
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Figure 3: Controls inputs.

It can be noted in Fig. 2 that the problem is successfully solved,
but with low convergence rate. Fig. 3 shows that the generated
control signals respect the imposed constraints. The dash-dotted
lines stands for the reference trajectories.

In the attempt of increasing the convergence rate, (Essen e
Nijmeijer, 2001) proposed a modified cost function in order to
increase the state penalty over the horizon, thus forcing the states
to converge faster. Hence, the idea of exponentially increasing
state weighting has been introduced. Also, a terminal statecost
has been added to the cost function to be minimized. From these

2All the optimization problems in this section has been solved with the
MATLAB routinefmincon.
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modifications the cost function assumes therefore the following
form:

Φ(k) =
N−1
∑

j=1

x̃T (k + j|k)Q(j)x̃(k + j|k)+

+
N−1
∑

j=0

ũT (k + j|k)Rũ(k + j|k) + Ω(x̃(k + N |k)), (12)

where Q(j) = 2j−1Q and Ω(x̃(k + N |k)) = x̃T (k +
N |k)Px̃(k + N |k), with P ≥ 0, is the terminal state cost.

Thus, by using the same conditions of the first case withP =
30Q(N), we have the results shown in Figures 4 and 5.
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Figure 4: Trajectory in theXY plane.

0 10 20 30 40 50 60 70
0.25

0.3

0.35

0.4

0.45

0.5

v 
(m

/s
)

0 10 20 30 40 50 60 70
−1

0

1

2

3

4

w
 (

ra
d/

s)

tempo (s)

Figure 5: Controls inputs.

Thus, comparing Figures 2 and 4, it can be clearly seen that the
robot presents a higher convergence rate, and Fig. 5 shows that
the control signals respect the imposed constraints.

4 THE LINEAR MPC APPROACH

In this section we introduce a linear MPC (LMPC) scheme
applied to the problem of trajectory tracking.

Although many NMPC techniques has been proposed in the
literature (Chen e Allgöwer, 1998; Allgower et al., 1999), it
should be noticed that the computational effort necessary in this
case is much higher than in the linear version. In NMPC there
is a nonlinear programming problem to be solved on-line, which
is nonconvex, has a larger number of decision variables and a
global minimum is in general impossible to find (Henson, 1998).
In this section, we propose a strategy in order to reduce the
computational burden. The fundamental idea consists in using
a successive linearization approach, yielding a linear, time-
varying description of the system. Then, considering the control
inputs as the decision variables, it is possible to transform the
optimization problem to be solved at each sampling time in a QP
problem (Kühne, 2005). Since they are convex, QP problems can
be easily solved by numerically robust algorithms which lead to
global optimal solutions.

A linear model of the system dynamics can be obtained by
computing an error model with respect to a reference car. By
expanding the right side of (2) in Taylor series around the point
(xr,ur) and discarding the high order terms it follows that:

ẋ = f(xr,ur) +
∂f(x,u)

∂x

∣

∣

∣

∣

x=xr

u=ur

(x − xr)+

+
∂f(x,u)

∂u

∣

∣

∣

∣

x=xr

u=ur

(u − ur),

or,

ẋ = f(xr,ur) + fx,r(x − xr) + fu,r(u − ur), (13)

wherefx,r andfu,r are the jacobians off with respect tox and
u, respectively, evaluated around the reference point(xr,ur).
Then, the subtraction of (4) from (13) results in:

˙̃x = fx,rx̃ + fu,rũ,

where, x̃ = x − xr represents the error with respect to the
reference car and̃u = u − ur is its associated error control
input.

The approximation oḟx by using forward differences gives the
following discrete-time system model:

x̃(k + 1) = A(k)x̃(k) + B(k)ũ(k), (14)

with

A(k) =





1 0 −vr(k) sin θr(k)T
0 1 vr(k) cos θr(k)T
0 0 1





B(k) =





cos θr(k)T 0
sin θr(k)T 0

0 T





In (Bloch e McClamroch, 1989) it is shown that the nonlinear,
nonholonomic system (1) is fully controllable, i.e., it canbe
steered from any initial state to any final state by using finite
inputs.
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Ā(k) =















A(k|k)
A(k + 1|k)A(k|k)

...
α(k, 2, 0)
α(k, 1, 0)















B̄(k) =















B(k|k) 0 · · · 0

A(k + 1|k)B(k|k) B(k + 1|k) · · · 0
...

...
. . .

...
α(k, 2, 1)B(k|k) α(k, 2, 2)B(k + 1|k) · · · 0

α(k, 1, 1)B(k|k) α(k, 1, 2)B(k + 1|k) · · · B(k + N − 1|k)















(15)

On the other hand, it is easy to see that when the robot is not
moving (i.e., vr = 0), the linearization around a stationary
operating point is not controllable. However, this linearization
becomes controllable as long as the control inputu is not
zero (Samson e Ait-Abderrahim, 1991). This implies that the
tracking of a reference trajectory is possible with linear MPC.

Now it is possible to recast the optimization problem in an
usual quadratic programming form. Hence, we introduce the
following vectors:

x̄(k + 1) =











x̃(k + 1|k)
x̃(k + 2|k)

...
x̃(k + N |k)











, ū(k) =











ũ(k|k)
ũ(k + 1|k)

...
ũ(k + N − 1|k)











Thus, withQ̄ = diag(Q; . . . ;Q) andR̄ = diag(R; . . . ;R), the
cost function (5) can be rewritten as:

Φ(k) = x̄T (k + 1)Q̄x̄(k + 1) + ūT (k)R̄ū(k), (16)

Therefore, it is possible from (14) to writēx(k + 1) as (Kühne,
2005):

x̄(k + 1) = Ā(k)x̃(k|k) + B̄(k)ū(k), (17)

whereĀ andB̄ are defined in (15) withα(k, j, l) given by:

α(k, j, l) =
l

∏

i=N−j

A(k + i|k)

From (16), (17) and after some algebraic manipulations, we can
rewrite the objective function (5) in a standard quadratic form:

Φ̄(k) =
1

2
ūT (k)H(k)ū(k) + fT (k)ū(k) + d(k) (18)

with

H(k) = 2
(

B̄(k)T Q̄B̄(k) + R̄
)

f(k) = 2B̄T (k)Q̄Ā(k)x̃(k|k)

d(k) = x̃T (k|k)ĀT (k)Q̄Ā(k)x̃(k|k)

The matrixH(k) is a Hessian matrix, and it is always positive
definite. It describes the quadratic part of the objective function,
and the vectorf describes the linear part.d is independent of̃u
and has no influence in the determination ofu⋆. Thus, we define

Φ̄′(k) =
1

2
ūT (k)H(k)ū(k) + fT (k)ū(k),

which is a standard expression used in QP problems and the
optimization problem to be solved at each sampling time is stated
as follows:

ũ⋆ = arg min
ũ

{

Φ̄′(k)
}

(19)

s. a.
Dũ(k + j|k) ≤ d, j ∈ [0, N − 1] (20)

Note that now only the control variables are used as decision
variables. Furthermore, constraints for the initial condition and
model dynamics are not necessary anymore, since now these
informations are implicit in the cost function (18), and any
constraint must be written with respect to the decision variables
(constraint (20)). In this case, the amplitude constraintsin the
control variables of (6) can be rewritten as

umin − ur(k + j) ≤ ũ(k + j|k) ≤ umax − ur(k + j)

and we have that:

D =

[

I

−I

]

, d =

[

umax − ur(k + j)
umin + ur(k + j)

]

Since the state prediction is a function of the optimal sequence to
be computed, it is easy to show that state constraints can also be
cast in the generic form given by (20). Furthermore, constraints
on the control rate and states can also be formulated in a similar
way.

Using the same procedure above, the matrixH(k) and the
vectorsf(k) andd(k) can be easily rewritten in order to consider
the more generic cost function (12). In this case it suffices
to considerQ̄ in (18) asQ̄ = diag(20Q, 21Q, . . . , 2N−1P),
whereP is the terminal state penalty matrix. Considering the
same data used in the cases previously shown, the optimization
problem (19)–(20) is solved at each sampling time. Figures 6
and 7 show the simulation results3 in this case, where the dash-
dotted lines stand for the reference trajectories and the dashed
line stand for the trajectories of the nonlinear case (Figures 4
and 5).
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Figure 6: Trajectory in theXY plane.
3The optimization problem was solved with the MATLAB routine

quadprog.
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It can be seen that there are not significative difference between
the nonlinear (Figures 4 and 5) and linear cases (Figures 6 and
7). Once more, the computed control signals respect the imposed
constraints.

5 COMPUTATIONAL EFFORT

The use of MPC for real-time control of systems with fast
dynamics such as a WMR has been hindered for some time due
to its numerical intensive nature (Cannon e Kouvaritakis, 2000).
However, with the development of increasingly faster processors
the use of MPC in demanding applications becomes possible.

In order to evaluate the real-time implementability of the
proposed MPC, we consider, as measurement criterion, the
number of floating point operations per second (flops). With
this aim we consider that the computations run in an Athlon XP
2600+ which is able to perform a peak performance between
576 and 1100 Mflops accordingly to (Aburto, 1992), a de-facto
standard for floating point performance measurement.

The sampling period used in all examples presented here is
T = 100 ms. The data in Table 1 refers to the mean
values of Mflops along the developed trajectory, for a MPC
applied to the trajectory tracking with cost function of (Essen
e Nijmeijer, 2001).

Table 1: Computational Effort.
Mflops

Horizon NMPC LMPC

5 11.1 0.17

10 502 0.95

15 5364 3.5

20 — 9.1

The data in Table 1 provides enough evidence that a standard
of-the-shelf computer is able to run a MPC-based controllerfor
a WMR. Note that forN = 5 both cases are feasible in real-
time. It is important to note the difference between the nonlinear

and linear cases. For a horizon higher than 10, the NMCP
would not be applicable, while the LMPC presents admissible
computational effort for a horizon of 20 or even higher. On the
other hand, comparing the performance showed in Fig. 6 and
Table 1, we can say that the linear approach developed here is
a good alternative when lower computational effort is necessary
since it does not presents a significative loss in performance.

6 CONCLUSION

This paper has presented an application of MPC to solve the
problem of mobile robot trajectory tracking. Two approaches
have been presented, first with nonlinear MPC (leading to a non-
convex optimization problem) and after that with linear MPC
(by recasting the problem as a quadratic programming one). The
obtained control signals are such that the constraints imposed on
the control variables are respected and the convergence rates are
improved by some modifications in the cost function.

In addition, a study regarding the computational effort necessary
to solve the optimization problems has been carried out in order
to evaluate the implementability of the proposed schemes inreal-
time.

With the linear approach, it has been possible to reduce the
computational effort, since the MPC optimization problem has
been recasted as a QP one. In comparison with the nonlinear
approach, it has been noted that the linear strategy maintains
good performance, with lower computational effort. It is
important to point out that the LMPC has the disadvantage that
the linearized model is only valid for points near the reference
trajectory. However, this problem can be easily solved withthe
pure-pursuit strategy (Normey-Rico et al., 1999).
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